ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 19, 2023
Revised August 9, 2023
Accepted August 24, 2023
Acknowledgements
This work was supported by the Natural Science Foundation of Ningxia, China (2023AAC03351), Project of Construction of First-class Disciplines in Ningxia Colleges and Universities (NXYLXK2021B10), and Project of College of Chemistry and Chemical Engineering of Ningxia Normal University (HGZD23-01).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

A 2D/2D BiPO4/g-C3N4-B Z-type heterojunction for enhanced photocatalytic degradation of dye pollutants

1College of Chemistry and Chemical Engineering, NingXia Normal University, Guyuan 756000, PRC 2Department of Applied Chemistry, ProvidenceUniversity, Taichung, Shalu, Taiwan, R.O.C
zhhjmf2005@163.com
Korean Journal of Chemical Engineering, December 2023, 40(12), 3068-3078(11), 10.1007/s11814-023-1559-z
downloadDownload PDF

Abstract

A 2D/2D BiPO4/g-C3N4-B nano-sheet heterojunction photocatalyst was synthesized via a simple coprecipitation method at room temperature using glacial acetic acid as solvent, which showed excellent activity toward the degradation of rhodamine B (RhB). The heterojunction showed much higher efficiency of separation and transfer of photogenerated carriers compared to that of its constituents. Moreover, the spectral response range of BiPO4 was effectively broadened after the combination of g-C3N4-B and BiPO4. Consequently, a 97.3% degradation of RhB within 25 min by BiPO4/g-C3N4-B heterojunction photocatalyst under visible light irradiation was observed. The difference in work functions of BiPO4 and g-C3N4-B was evident from UPS characterization, which led to the bending of the energy band and the establishment of an internal electric field at the interface of the heterojunction. Therefore, the synthesized direct Z-type BiPO4/g-C3N4-B heterojunction enhanced the oxidation-reduction ability by promoting the effective separation of photogenerated carriers.

References

1. J. C. Medina, M. Bizarro, P. Silva-Bermudez, M. Giorcelli, A. Tagliaferro and S. E. Rodil, Thin. Solid. Films., 612, 72 (2016).
2. J. Xie, Y. L. Cao and D. Z. Jia, J. Alloys. Compd., 832, 154953 (2020).
3. N. A. Mohamed, J. Safaei, A. F. Ismail, M. N. Khalid, M. F. A. Mohd Jailani, M. F. M. Noh, N. A. Arzaee, D. Zhou, J. S. Sagu and M. A. M.Teridi, Mater. Res. Bull., 125, 110779 (2020).
4. J. Shokraiyan, V. Jahed and M. Rabbani, J. Chin. Chem. Soc., 68,1880 (2021).
5. G. J. Guo, and H. Yan, Chem. Phys., 538, 110920 (2020).
6. R. Kumar, P. Raizada, A. A. P. Khan, V. H. Nguyen, Q. Van Le, S.Ghotekar, R. Selvasembian, V. Gandhi, A. Singh and P. Singh, J.Mater. Sci. Technol., 108, 208 (2022).
7. Y. Naciri, A. Hsini, Z. Ajmal, J. A. Navio, B. Bakiz, A. Albourine,M. Ezahri and A. Benlhachemi, Adv. Colloid. Interface. Sci., 280,102160 (2020).
8. C. B. Wu, C. X. Zhou, Y. Y. Chen, Z. G. Peng, J. Yang and Y. M.Zhang, J. Nanomater., 2021, 1 (2021).
9. Y. Chen, X. L. Jin and P. Guo, J. Mol. Struct., 1171, 140 (2018).
10. H. J. Gao, C. X. Zheng, H. Yang, X. W. Niu and S. F. Wang, Micromachines, 10, 557 (2019).
11. Y. M. Liu, P. Zhang, H. Lv, J. Guang, S. Li and J. H. Jiang, RSC Adv.,5, 83764 (2015).
12. X. Zhang, P. Yang, B. Yang, Y. Bai, W. H. Liu, H. B. Huo, J. M. Li and G. Li, New. J. Chem., 45, 18957 (2021).
13. W. Q. Kong, X. F. Zhang, B. B. Chang, Y. N. Zhou, S. R. Zhang,G. L. He, B. C. Yang and J. J. Li, Electrochim. Acta, 282, 767 (2018).
14. G. Q. Tan, L. N. She, T. Liu, C. Xu, H. J. Ren and A. Xia, Appl. Catal.B, 207, 120 (2017).
15. X. J. Zou, Y. Y. Dong, Z. B. Chen, D. P. Dong, D. X. Hu, X. Y. Li and Y. B. Cui, RSC Adv., 6, 20664 (2016).
16. J. Jang Ng, K. Hon Leong, L. Ching Sim, Y. Heng Chin and S.Pichiah, MSE, 917, 012007 (2020).
17. W. K. Wang, H. J. Zhou, Y. Y. Liu, S. B. Zhang, Y. X. Zhang, G. Z.Wang, H. M. Zhang and H. J. Zhao, Small, 16, 1906880 (2020).
18. H. H. Xiao, G. Q. Ma, J. Y. Tan, S. Ru, Z. Q. Ai and C. X. Wang, RSC Adv., 10, 32609 (2020).
19. J. R. Jesus, J. G. S. Duque, C. T. Meneses, R. J. S. Lima and K. O.Moura, Ceram. Int., 44, 3585 (2018).
20. B. Lin, H. Li, H. An, W. B. Hao, J. J. Wei, Y. Z. Dai, C. S. Ma and G. D. Yang, Appl. Catal. B, 220, 542 (2018).
21. F. Tian, H. P. Zhao, G. F. Li, Z. Dai, Y. L. Liu and R. Chen, ChemSusChem., 9, 1579 (2016).
22. F. Ji, J. Li, X. L. Cui, J. Liu, X. M. Bing and P. Song, Appl. Clay. Sci.,162, 182 (2018).
23. Y. J. Long, L. X. Li, L. T. Zhou, S. F. Zhang, L. L. Wang, Z. G. Zheng,S. L. Wu, Y. R. Hei and F. Z. Jiang, Mater. Res. Bull., 126, 110787 (2020).
24. Z. S. Li, S. Y. Yang, J. M. Zhou, D. H. Li, X. F. Zhou, C. Y. Ge and Y. P. Fang, Chem. Eng. J., 241, 344 (2014).
25. W. D. Hou, C. M. Deng, H. M. Xu, D. Y. Li, Z. W. Zou, H. Xia and D. S. Xia, ChemistrySelect., 5, 2767 (2020).
26. Y. G. Li, W. K. Shang, H. J. Li, M. R. Yang, S. S. Shi, J. Li, C. Y.Huang and A. N. Zhou, ChemistrySelect., 6, 4319 (2021).
27. D. Y. Jiang, D. Xu, J. Zheng, Y. Yang, C. Liu, Y. S. Wang, G. B. Che,X. Lin and L. M. Chang, J. Chem. Phys., 29, 600 (2016).
28. H. J. Fang, Y. S. Pan, H. X. Yan, L. F. Xu and C. L. Pan, Mater. Sci.Semicond. Process., 127, 105722 (2021).
29. X. Q. Hao, Q. J. Guo, M. Li, Z. L. Jin and Y. Wang, Catal. Sci. Technol., 10, 5267 (2020).
30. H. J. Zhao, Z. Yu, R. J. Wu, M. Yi, G. H. Zhang, Y. Zhou, Z. B. Han,X. Li and F. Ma, J. Chin. Chem. Soc., 69, 925 (2022).
31. M. Khajeh, A. R. Oveisi, A. Barkhordar, M. Rakhshanipour and H. Sargazi-Avval, J. Nanostructure. Chem., 12, 105 (2022).
32. J. F. Chen, J. B. Zhong, S. T. Huang, J. Z. Li and R. Duan, Inorg.Nano-Met. Chem., 52, 563 (2021).
33. X. B. Li, J. Xiong, Y. Xu, Z. J. Feng and J. T. Huang, Chin. J. Catal.,40, 424 (2019).
34. M. S. Zhu, Z. C. Sun, M. Fujitsuka and T. Majima, Angew. Chem.Int. Ed. Engl., 57, 2160 (2018).
35. S. J. Li, J. L. Chen, S. W. Hu, H. L. Wang, W. Jiang and X. B. Chen,Chem. Eng. J., 402, 126165 (2020).
36. R. Pandiyan, Z. Oulad Elhmaidi, Z. Sekkat, M. Abd-lefdil and M. A.El Khakani, Appl. Surf. Sci., 396, 1562 (2017).
37. Y. L. Gao, Mater. Sci. Eng. R., 68, 39 (2010).
38. Q. L. Xu, L. Y. Zhang, J. G. Yu, S. Wageh, A. A. Al-Ghamdi and M.Jaroniec, Mater. Today, 21, 1042 (2018).
39. J. J. Liu, B. Cheng and J. G. Yu, Phys. Chem. Chem. Phys., 18, 31175 (2016).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로