Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 10, 2023
Revised June 23, 2023
Accepted June 29, 2023
- Acknowledgements
- This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (No. NRF-2018R1A5A1024127, NRF-2023R1A2C2004002, and NRF-2021M3H4A6A01041234), and Soonchunhyang University Research Fund (No. 20221186).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Reconstruction of particle size distribution from cross-sections
Abstract
Controlling the microstructure enables higher energy density and lower energy consumption of a battery.
Although particle size distribution is an important property of microstructures, its study is hindered by limited analytical tools. In this study, we precisely estimate the 3-dimensional (3D) spherical size distribution from a 2-dimensional
circular size distribution. Here, we introduce the least absolute shrinkage and selection operator (LASSO) regularization method to handle the existing issues in 3D reconstruction efficiently. Using a virtual structure from various predefined distributions, we demonstrate that the LASSO regression outperforms other regularization methods in predicting
the original distribution. Finally, we suggest an effective number of cross sections, that is, the minimum required number of cross sections, for 3D reconstruction consisting of spherical particles.
Keywords
References
2. B. Dunn, H. Kamath and J.-M. Tarascon, Science, 334, 928 (2011).
3. G. Zubi, R. Dufo-López, M. Carvalho and G. Pasaoglu, Renew.Sust. Energ. Rev., 89, 292 (2018).
4. M. Bragard, N. Soltau, S. Thomas and R. W. De Doncker, IEEE Trans. Power Electron., 25, 3049 (2010).
5. B. Kang and G. Ceder, Nature, 458, 190 (2009).
6. J. Janek and W. G. Zeier, Nat. Energy, 1, 1 (2016).
7. D. R. Nevers, S. W. Peterson, L. Robertson, C. Chubbuck, J. Flygare, K. Cole and D. R. Wheeler, J. Electrochem. Soc., 161, A1691 (2014).
8. P. Shearing, R. Bradley, J. Gelb, N. Brandon and P. Withers, Microsc.Microanal., 17, 1672 (2011).
9. D. Kim, S. Lee, W. Hong, H. Lee, S. Jeon, S. Han and J. Nam,Microsc. Microanal., 25, 1139 (2019).
10. Z. Chen, W. Zhang and Z. Yang, Nanotechnology, 31, 012001 (2019).
11. S. T. Taleghani, B. Marcos, K. Zaghib and G. Lantagne, J. Electrochem. Soc., 164, E3179 (2017).
12. M. Kishimoto, H. Iwai, M. Saito and H. Yoshida, ECS Trans., 25,1887 (2009).
13. M. M. Majdabadi, S. Farhad, M. Farkhondeh, R. A. Fraser and M.Fowler, J. Power Sources, 275, 633 (2015).
14. K. Wiencek, T. Skowronek and B. Khatemi, Metall. Foundry Eng.,31, 167 (2005).
15. V. Wernert, B. Coasne, P. Levitz, K. L. Nguyen, E. J. Garcia and R.Denoyel, Chem. Eng. Sci., 264, 118136 (2022).
16. M. A. Lopez-Sanchez and S. Llana-Fúnez, J. Struct. Geol., 93, 149 (2016).
17. D. Depriester and R. Kubler, Image Anal. Stereol., 38, 213 (2019).
18. N. Keiding and S. T. Jensen, Biometrics, 28, 813 (1972).
19. S. A. Saltikov, in Stereology, Springer (1967).
20. L. M. C. Orive, J. Microsc., 112, 153 (1978).
21. E. E. Underwood, Quantitative stereology, Addison-Wesley Publ.Co., Reading (1970).
22. E. Underwood, in Stereology and quantitative metallography, ASTM International (1972).
23. E. F. Maher and N. M. Laird, J. Aerosol Sci., 16, 557 (1985).
24. M. Konert and J. Vandenberghe, Sedimentology, 44, 523 (1997).
25. W. Pabst and T. Uhlířová, Ceram. Silik, 61, 147 (2017).
26. K. C. G. Chan and J. Qin, Biometrika, 103, 273 (2016).
27. J. Wilson, J. Stat. Comput. Simul., 31, 195 (1989).
28. S. Champier and L. Grammont, Inverse Probl., 18, 79 (2002).
29. R. Tibshirani, J. R. Stat. Soc., B: Stat. Methodol., 58, 267 (1996).
30. D. L. Sahagian and A. A. Proussevitch, J. Volcanol. Geotherm. Res.,84, 173 (1998).
31. M. J. Wainwright, IEEE Trans. Inf. Theory, 55, 2183 (2009).
32. S. Jiang, J. Liu, G. Zhang, Y. An, H. Meng, Y. Gao, K. Wang and J.Tian, IEEE Trans. Biomed. Eng., 66, 1361 (2018).
33. R. Muthukrishnan and R. Rohini, 2016 IEEE international conference on advances in computer applications (ICACA), (2016).
34. D. Wang, Y. Che, C. Li, Y. Chen, H. Yin and C. Zhang, 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom) (2021).
35. Y. Shi and Y. Zhang, Appl. Phys. A, 92, 621 (2008).
36. P. Bowen, J. Dispersion Sci. Technol., 23, 631 (2002).
37. R. Blödner, P. Mühlig and W. Nagel, J. Microsc., 135, 61 (1984).
38. D. Depriester and R. Kubler, J. Struct. Geol., 151, 104418 (2021)