ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 10, 2023
Revised June 23, 2023
Accepted June 29, 2023
Acknowledgements
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (No. NRF-2018R1A5A1024127, NRF-2023R1A2C2004002, and NRF-2021M3H4A6A01041234), and Soonchunhyang University Research Fund (No. 20221186).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Reconstruction of particle size distribution from cross-sections

1School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea 2Department of Chemical Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Shinchang-myeon, Asan-si, Chungcheongnam-do 31538, Kore 3Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Shinchang-myeon, Asan-si, Chungcheongnam-do 31538, Korea 4Institute of Chemical Process, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
jaewooknam@snu.ac.kr
Korean Journal of Chemical Engineering, December 2023, 40(12), 3079-3086(8), 10.1007/s11814-023-1521-0
downloadDownload PDF

Abstract

Controlling the microstructure enables higher energy density and lower energy consumption of a battery. Although particle size distribution is an important property of microstructures, its study is hindered by limited analytical tools. In this study, we precisely estimate the 3-dimensional (3D) spherical size distribution from a 2-dimensional circular size distribution. Here, we introduce the least absolute shrinkage and selection operator (LASSO) regularization method to handle the existing issues in 3D reconstruction efficiently. Using a virtual structure from various predefined distributions, we demonstrate that the LASSO regression outperforms other regularization methods in predicting the original distribution. Finally, we suggest an effective number of cross sections, that is, the minimum required number of cross sections, for 3D reconstruction consisting of spherical particles.

References

1. A. M. Andwari, A. Pesiridis, S. Rajoo, R. Martinez-Botas and V.Esfahanian, Renew. Sust. Energ. Rev., 78, 414 (2017).
2. B. Dunn, H. Kamath and J.-M. Tarascon, Science, 334, 928 (2011).
3. G. Zubi, R. Dufo-López, M. Carvalho and G. Pasaoglu, Renew.Sust. Energ. Rev., 89, 292 (2018).
4. M. Bragard, N. Soltau, S. Thomas and R. W. De Doncker, IEEE Trans. Power Electron., 25, 3049 (2010).
5. B. Kang and G. Ceder, Nature, 458, 190 (2009).
6. J. Janek and W. G. Zeier, Nat. Energy, 1, 1 (2016).
7. D. R. Nevers, S. W. Peterson, L. Robertson, C. Chubbuck, J. Flygare, K. Cole and D. R. Wheeler, J. Electrochem. Soc., 161, A1691 (2014).
8. P. Shearing, R. Bradley, J. Gelb, N. Brandon and P. Withers, Microsc.Microanal., 17, 1672 (2011).
9. D. Kim, S. Lee, W. Hong, H. Lee, S. Jeon, S. Han and J. Nam,Microsc. Microanal., 25, 1139 (2019).
10. Z. Chen, W. Zhang and Z. Yang, Nanotechnology, 31, 012001 (2019).
11. S. T. Taleghani, B. Marcos, K. Zaghib and G. Lantagne, J. Electrochem. Soc., 164, E3179 (2017).
12. M. Kishimoto, H. Iwai, M. Saito and H. Yoshida, ECS Trans., 25,1887 (2009).
13. M. M. Majdabadi, S. Farhad, M. Farkhondeh, R. A. Fraser and M.Fowler, J. Power Sources, 275, 633 (2015).
14. K. Wiencek, T. Skowronek and B. Khatemi, Metall. Foundry Eng.,31, 167 (2005).
15. V. Wernert, B. Coasne, P. Levitz, K. L. Nguyen, E. J. Garcia and R.Denoyel, Chem. Eng. Sci., 264, 118136 (2022).
16. M. A. Lopez-Sanchez and S. Llana-Fúnez, J. Struct. Geol., 93, 149 (2016).
17. D. Depriester and R. Kubler, Image Anal. Stereol., 38, 213 (2019).
18. N. Keiding and S. T. Jensen, Biometrics, 28, 813 (1972).
19. S. A. Saltikov, in Stereology, Springer (1967).
20. L. M. C. Orive, J. Microsc., 112, 153 (1978).
21. E. E. Underwood, Quantitative stereology, Addison-Wesley Publ.Co., Reading (1970).
22. E. Underwood, in Stereology and quantitative metallography, ASTM International (1972).
23. E. F. Maher and N. M. Laird, J. Aerosol Sci., 16, 557 (1985).
24. M. Konert and J. Vandenberghe, Sedimentology, 44, 523 (1997).
25. W. Pabst and T. Uhlířová, Ceram. Silik, 61, 147 (2017).
26. K. C. G. Chan and J. Qin, Biometrika, 103, 273 (2016).
27. J. Wilson, J. Stat. Comput. Simul., 31, 195 (1989).
28. S. Champier and L. Grammont, Inverse Probl., 18, 79 (2002).
29. R. Tibshirani, J. R. Stat. Soc., B: Stat. Methodol., 58, 267 (1996).
30. D. L. Sahagian and A. A. Proussevitch, J. Volcanol. Geotherm. Res.,84, 173 (1998).
31. M. J. Wainwright, IEEE Trans. Inf. Theory, 55, 2183 (2009).
32. S. Jiang, J. Liu, G. Zhang, Y. An, H. Meng, Y. Gao, K. Wang and J.Tian, IEEE Trans. Biomed. Eng., 66, 1361 (2018).
33. R. Muthukrishnan and R. Rohini, 2016 IEEE international conference on advances in computer applications (ICACA), (2016).
34. D. Wang, Y. Che, C. Li, Y. Chen, H. Yin and C. Zhang, 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom) (2021).
35. Y. Shi and Y. Zhang, Appl. Phys. A, 92, 621 (2008).
36. P. Bowen, J. Dispersion Sci. Technol., 23, 631 (2002).
37. R. Blödner, P. Mühlig and W. Nagel, J. Microsc., 135, 61 (1984).
38. D. Depriester and R. Kubler, J. Struct. Geol., 151, 104418 (2021)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로