Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 16, 2023
Revised September 4, 2023
Accepted October 4, 2023
- Acknowledgements
- This work was supported by “Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-001), “Young Researcher Program” through the NRF grant funded by the Ministry of Science and ICT (2020R1C1C1010386), Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0020614, HRD Program for Industrial Innovation), and the Ministry of SMEs and Startups, Republic of Korea (RS202300256612).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Two-dimensional polymeric cobalt phthalocyanine synthesized by microwave irradiation and its use for continuous glucose monitoring
Abstract
Two-dimensional polymeric cobalt phthalocyanine (poly-CoPc) was synthesized using a microwaveassisted process, and its feasibility for use in continuous glucose monitoring (CGM) was investigated. The poly-CoPc/
CNT composite showed 18% higher Co content than using commercial CoPc (c-CoPc/CNT) and synthesized CoPc (sCoPc/CNT) composites, due to its intrinsic polymeric structure. In the cyclic voltammetry test, the bioelectrode incorporating glucose oxidase (GOx) based upper enzyme layer ([poly-CoPc/CNT]/PEI/[GOx-TPA]) demonstrated 1.51
times higher current densities than monomeric CoPc used bioelectrode ([CoPc/CNT]/PEI/[GOx-TPA]). This improvement is attributed to the higher biocompatibility with the enzyme layer of poly-CoPc, which prevents the blocking of
hydrophobic sites near the co-factor of GOx. As a glucose sensor, [poly-CoPc/CNT]/PEI/[GOx-TPA] exhibits a sensitivity of 50.5 A mM1
cm2
and a response time of 2.4 s in the chronoamperometric response test. Furthermore, the
proposed bioelectrode showed 95.6% performance maintenance during 24 h and 81.4% stability over 20 days. These
findings demonstrate the suitability of [poly-CoPc/CNT]/PEI/[GOx-TPA] for implantable and low-invasive patch-type
glucose sensors offering high sensitivity, durability, and a linear response within the physiological glucose concentration range (0.1-20.0 mM) of both average individuals and diabetic patients
Keywords
References
2. P. Saeedi, I. Petersohn, P. Salpea, B. Malanda, S. Karuranga, N.Unwin, S. Colagiuri, L. Guariguata, A. A. Motala, K. Ogurtsova,J. E. Shaw, D. Bright and R. Williams, Diabetes Res. Clin. Pract.,157, 107843 (2019).
3. A. L. Holm, G. S. Andersen, M. E. Jørgensen and F. Diderichsen,BMJ Open, 8, e023211 (2018).
4. K. K. Clemens, N. O’Regan and J. J. Rhee, Curr. Diab. Rep., 19, 1 (2019).
5. W. Li, W. Luo, M. Li, L. Chen, L. Chen, H. Guan and M. Yu, Front.Chem., 9, 723186 (2021).
6. L. Johnston, G. Wang, K. Hu, C. Qian and G. Liu, Front. Bioeng.Biotechnol., 9, 733810 (2021).
7. A. A. Al Hayek, A. A. Robert and M. A. Al Dawish, Clin. Med.Insights: Endocrinol. Diabetes., 12, 11795514 (2019).
8. L. Olansky and L. Kennedy, Diabetes Care., 33, 948 (2010).
9. H. Lee, Y. J. Hong, S. Baik, T. Hyeon and D. Kim, Adv. Healthc Mater., 7, 1701150 (2018).
10. X. Huang, J. Yang, S. Huang, H. jiuan Chen and X. Xie, Biodes Manuf., 5, 9 (2022).
11. V. Malyško-Ptašinskė, G. Staigvila and V. Novickij, Front. Bioeng.Biotechnol., 10, 1094968 (2023).
12. S. Jeon, J. Ji, H. An, Y. Kwon and Y. Chung, Mater. Chem. Phys.,267, 124615 (2021).
13. V. B. Juska and M. E. Pemble, Sensors, 20, 6013 (2020).
14. B. C. Kang, B. S. Park and T. J. Ha, Appl. Surf. Sci., 470, 13 (2019).
15. H. An, H. Jeon, J. Ji, Y. Kwon and Y. Chung, J. Energy Chem., 58,463 (2021).
16. B. B. Kamble, P. Talele, A. K. Tawade, K. K. Sharma, S. S. Mali, C. K.Hong and S. N. Tayade, Korean J. Chem. Eng., 39, 1604 (2022).
17. J. Lee, K. Hyun and Y. Kwon, Korean J. Chem. Eng., 40, 1775 (2023).
18. T. V. Dang and M. I. Kim, Korean J. Chem. Eng., 40, 302 (2023).
19. X. Wang, J. H. Kim, Y. B. Choi, H. H. Kim and C. J. Kim, Korean J.Chem. Eng., 36, 1172 (2019).
20. H. Wang, Y. Bu, W. Dai, K. Li, H. Wang and X. Zuo, Sens. Actuators B Chem., 216, 298 (2015).
21. K. Wang, J. J. Xu and H. Y. Chen, Biosens. Bioelectron., 20, 1388 (2005).
22. F. Haghighian, S. M. Ghoreishi, A. Attaran, F. Z. Kashani and A.Khoobi, Korean J. Chem. Eng., 40, 650 (2023).
23. S. Jeon, H. An and Y. Chung, Sustain. Energy Fuels., 6, 841 (2022).
24. J. Ji, K. Im, H. An, S. J. Yoo, Y. Chung, J. Kim and Y. Kwon, Int. J.Energy Res., 46, 760 (2022).
25. R. R. Cranston and B. H. Lessard, RSC Adv., 11, 21716 (2021).
26. T. Kondo, M. Horitani and M. Yuasa, Int. J. Electrochem., 2012, 6 (2012).
27. K. I. Ozoemena and T. Nyokong, Electrochim. Acta, 51, 5131 (2006).
28. H. Wu, Y. Cao, G. Zhu, D. Zeng, X. Zhu, J. Du and L. He, Chem.Commun., 56, 3637 (2020).
29. N. B. McKeown, J. Mater. Chem., 10, 1979 (2000).
30. H. An, C. Noh, S. Jeon, Y. Kwon and Y. Chung, J. Energy Storage.,68, 107796 (2023).
31. P. M. Budd, S. M. Makhseed, B. S. Ghanem, K. J. Msayib, C. E. Tattershall and N. B. McKeown, Mater Today., 7, 40 (2004).
32. K. P. C. P., K. Rayappa Naveen, S. Aralekallu, Shivalingayya and L.Koodlur Sannegowda, RSC Sustain., 1, 128 (2023).
33. M. Wang, S. Fu, P. Petkov, Y. Fu, Z. Zhang, Y. Liu, J. Ma, G. Chen,S. M. Gali, L. Gao, Y. Lu, S. Paasch, H. Zhong, H. P. Steinrück, E.Cánovas, E. Brunner, D. Beljonne, M. Bonn, H. I. Wang, R. Dong and X. Feng, Nat. Mater, 22, 880 (2023).
34. P. T. Phan, J. Hong, N. Tran and T. H. Le, Nanomaterials, 13, 352 (2023).
35. N. Han, Y. Wang, L. Ma, J. Wen, J. Li, H. Zheng, K. Nie, X. Wang,F. Zhao, Y. Li, J. Fan, J. Zhong, T. Wu, D. J. Miller, J. Lu, S. T. Lee and Y. Li, Chem. Soc. Rev., 3, 652 (2017).
36. N. Han, Y. Wang, L. Ma, J. Wen, J. Li, H. Zheng, K. Nie, X. Wang,F. Zhao, Y. Li, J. Fan, J. Zhong, T. Wu, D. J. Miller, J. Lu, S. T. Lee and Y. Li, Chem. Soc. Rev., 3, 652 (2017).
37. Y. Tanamura, T. Uchida, N. Teramae, M. Kikuchi, K. Kusaba and Y. Onodera, Nano Lett., 1, 387 (2001).
38. Y. Chung, K. H. Hyun and Y. Kwon, Nanoscale, 8, 1161 (2015).
39. Y. Chung, D. C. Tannia and Y. Kwon, Chem. Eng. J., 334, 1085 (2018).
40. J. Chen, K. Zou, P. Ding, J. Deng, C. Zha, Y. Hu, X. Zhao, J. Wu, J.Fan, Y. Li, J. M. Chen, K. Y. Zou, P. Ding, J. Deng, C. Y. Zha, Y. P.Hu, X. Zhao, J. L. Wu, J. Fan and Y. G. Li, Adv. Mater., 31, 1805484 (2019).
41. S. Wei, H. Zou, W. Rong, F. Zhang, Y. Ji and L. Le Duan, Appl.Catal. B., 284, 119739 (2021).
42. V. I. Korepanov and D. M. Sedlovets, Mater. Res. Express., 6, 5 (2019).
43. M. M. Coleman, A. M. Lichkus and P. C. Painter, Macromolecules,22, 586 (1989).
44. C. Lau, S. Zheng, Z. Zhong and Y. Mi, Macromolecules, 31, 7291 (1998).
45. D. Wöhrle and E. Preußner, Makromol. Chem., 186, 2189 (1985).
46. B. Ortiz, S. Park and N. Doddapaneni, Mater. Res. Express., 143,1800 (1996).
47. S. Jeon, H. An, J. Ji, Y. Kwon and Y. Chung, Int. J. Energy Res., 46,4142 (2022).
48. J. Ji, C. Noh, Y. Chung and Y. Kwon, J. Mater. Chem. C., 9, 14675 (2021).
49. S. Jeon, H. An, C. Noh, Y. Kwon and Y. Chung, Appl. Surf. Sci., 613,155962 (2023).
50. Y. Chung, Y. Ahn, M. Christwardana, H. Kim and Y. Kwon,Nanoscale, 8, 9201 (2016).
51. M. Christwardana, Y. Chung and Y. Kwon, NPG Asia Mater., 9,e386 (2017).
52. P. E. Cryer, S. N. Davis and H. Shamoon, Diabetes Care., 26, 1902 (2003).
53. H. An, C. Noh, S. Jeon, M. Shin, Y. Kwon and Y. Chung, Int. J.Energy Res., 46, 11802 (2022).
54. V. Mani, R. Devasenathipathy, S. M. Chen, S. T. Huang and V. S.Vasantha, Enzyme Microb. Technol., 66, 60 (2014).
55. S. Palanisamy, C. Karuppiah and S. M. Chen, Colloids Surf. B., 114,164 (2014).
56. J. D. Qiu, W. M. Zhou, J. Guo, R. Wang and R. P. Liang, Anal. Biochem., 385, 264 (2009).
57. Z. H. Dai, J. Ni, X. H. Huang, G. F. Lu and J. C. Bao, Bioelectrochemistry, 70, 250 (2007).
58. R. M. Pemberton, T. Cox, R. Tuffin, I. Sage, G. A. Drago, N. Biddle,J. Griffiths, R. Pittson, G. Johnson, J. Xu, S. K. Jackson, G. Kenna,R. Luxton and J. P. Hart, Biosens. Bioelectron., 42, 668 (2013).
59. S. Yang, Y. Yu, X. Gao, Z. Zhang and F. Wang, Chem. Soc. Rev., 50,12985 (2021).
60. S. De, T. Devic and A. Fateeva, Dalton Trans., 50, 1166 (2021).
61. A. Singh, S. Roy, C. Das, D. Samanta and T. K. Maji, Chem. Commun., 54, 4465 (2018)