ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 16, 2023
Revised September 4, 2023
Accepted October 4, 2023
Acknowledgements
This work was supported by “Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-001), “Young Researcher Program” through the NRF grant funded by the Ministry of Science and ICT (2020R1C1C1010386), Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0020614, HRD Program for Industrial Innovation), and the Ministry of SMEs and Startups, Republic of Korea (RS202300256612).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Two-dimensional polymeric cobalt phthalocyanine synthesized by microwave irradiation and its use for continuous glucose monitoring

1Department of IT·Energy Convergence, Korea National University of Transportation, 50 Daehak-ro, Chungju, Chungbuk 27469, Korea 2Department of Chemical and Biological Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju, Chungbuk 27469, Korea
ychung@ut.ac.kr
Korean Journal of Chemical Engineering, December 2023, 40(12), 3096-3105(10), 10.1007/s11814-023-1577-x
downloadDownload PDF

Abstract

Two-dimensional polymeric cobalt phthalocyanine (poly-CoPc) was synthesized using a microwaveassisted process, and its feasibility for use in continuous glucose monitoring (CGM) was investigated. The poly-CoPc/ CNT composite showed 18% higher Co content than using commercial CoPc (c-CoPc/CNT) and synthesized CoPc (sCoPc/CNT) composites, due to its intrinsic polymeric structure. In the cyclic voltammetry test, the bioelectrode incorporating glucose oxidase (GOx) based upper enzyme layer ([poly-CoPc/CNT]/PEI/[GOx-TPA]) demonstrated 1.51 times higher current densities than monomeric CoPc used bioelectrode ([CoPc/CNT]/PEI/[GOx-TPA]). This improvement is attributed to the higher biocompatibility with the enzyme layer of poly-CoPc, which prevents the blocking of hydrophobic sites near the co-factor of GOx. As a glucose sensor, [poly-CoPc/CNT]/PEI/[GOx-TPA] exhibits a sensitivity of 50.5 A mM1 cm2 and a response time of 2.4 s in the chronoamperometric response test. Furthermore, the proposed bioelectrode showed 95.6% performance maintenance during 24 h and 81.4% stability over 20 days. These findings demonstrate the suitability of [poly-CoPc/CNT]/PEI/[GOx-TPA] for implantable and low-invasive patch-type glucose sensors offering high sensitivity, durability, and a linear response within the physiological glucose concentration range (0.1-20.0 mM) of both average individuals and diabetic patients

References

1. F. Xiong, J. Wang, J. L. Nierenberg, E. L. Van Blarigan, S. A. Kenfield, J. M. Chan, G. Schmajuk, C.-Y. Huang and R. E. Graff, Br. J.Cancer., 129, 648 (2023).
2. P. Saeedi, I. Petersohn, P. Salpea, B. Malanda, S. Karuranga, N.Unwin, S. Colagiuri, L. Guariguata, A. A. Motala, K. Ogurtsova,J. E. Shaw, D. Bright and R. Williams, Diabetes Res. Clin. Pract.,157, 107843 (2019).
3. A. L. Holm, G. S. Andersen, M. E. Jørgensen and F. Diderichsen,BMJ Open, 8, e023211 (2018).
4. K. K. Clemens, N. O’Regan and J. J. Rhee, Curr. Diab. Rep., 19, 1 (2019).
5. W. Li, W. Luo, M. Li, L. Chen, L. Chen, H. Guan and M. Yu, Front.Chem., 9, 723186 (2021).
6. L. Johnston, G. Wang, K. Hu, C. Qian and G. Liu, Front. Bioeng.Biotechnol., 9, 733810 (2021).
7. A. A. Al Hayek, A. A. Robert and M. A. Al Dawish, Clin. Med.Insights: Endocrinol. Diabetes., 12, 11795514 (2019).
8. L. Olansky and L. Kennedy, Diabetes Care., 33, 948 (2010).
9. H. Lee, Y. J. Hong, S. Baik, T. Hyeon and D. Kim, Adv. Healthc Mater., 7, 1701150 (2018).
10. X. Huang, J. Yang, S. Huang, H. jiuan Chen and X. Xie, Biodes Manuf., 5, 9 (2022).
11. V. Malyško-Ptašinskė, G. Staigvila and V. Novickij, Front. Bioeng.Biotechnol., 10, 1094968 (2023).
12. S. Jeon, J. Ji, H. An, Y. Kwon and Y. Chung, Mater. Chem. Phys.,267, 124615 (2021).
13. V. B. Juska and M. E. Pemble, Sensors, 20, 6013 (2020).
14. B. C. Kang, B. S. Park and T. J. Ha, Appl. Surf. Sci., 470, 13 (2019).
15. H. An, H. Jeon, J. Ji, Y. Kwon and Y. Chung, J. Energy Chem., 58,463 (2021).
16. B. B. Kamble, P. Talele, A. K. Tawade, K. K. Sharma, S. S. Mali, C. K.Hong and S. N. Tayade, Korean J. Chem. Eng., 39, 1604 (2022).
17. J. Lee, K. Hyun and Y. Kwon, Korean J. Chem. Eng., 40, 1775 (2023).
18. T. V. Dang and M. I. Kim, Korean J. Chem. Eng., 40, 302 (2023).
19. X. Wang, J. H. Kim, Y. B. Choi, H. H. Kim and C. J. Kim, Korean J.Chem. Eng., 36, 1172 (2019).
20. H. Wang, Y. Bu, W. Dai, K. Li, H. Wang and X. Zuo, Sens. Actuators B Chem., 216, 298 (2015).
21. K. Wang, J. J. Xu and H. Y. Chen, Biosens. Bioelectron., 20, 1388 (2005).
22. F. Haghighian, S. M. Ghoreishi, A. Attaran, F. Z. Kashani and A.Khoobi, Korean J. Chem. Eng., 40, 650 (2023).
23. S. Jeon, H. An and Y. Chung, Sustain. Energy Fuels., 6, 841 (2022).
24. J. Ji, K. Im, H. An, S. J. Yoo, Y. Chung, J. Kim and Y. Kwon, Int. J.Energy Res., 46, 760 (2022).
25. R. R. Cranston and B. H. Lessard, RSC Adv., 11, 21716 (2021).
26. T. Kondo, M. Horitani and M. Yuasa, Int. J. Electrochem., 2012, 6 (2012).
27. K. I. Ozoemena and T. Nyokong, Electrochim. Acta, 51, 5131 (2006).
28. H. Wu, Y. Cao, G. Zhu, D. Zeng, X. Zhu, J. Du and L. He, Chem.Commun., 56, 3637 (2020).
29. N. B. McKeown, J. Mater. Chem., 10, 1979 (2000).
30. H. An, C. Noh, S. Jeon, Y. Kwon and Y. Chung, J. Energy Storage.,68, 107796 (2023).
31. P. M. Budd, S. M. Makhseed, B. S. Ghanem, K. J. Msayib, C. E. Tattershall and N. B. McKeown, Mater Today., 7, 40 (2004).
32. K. P. C. P., K. Rayappa Naveen, S. Aralekallu, Shivalingayya and L.Koodlur Sannegowda, RSC Sustain., 1, 128 (2023).
33. M. Wang, S. Fu, P. Petkov, Y. Fu, Z. Zhang, Y. Liu, J. Ma, G. Chen,S. M. Gali, L. Gao, Y. Lu, S. Paasch, H. Zhong, H. P. Steinrück, E.Cánovas, E. Brunner, D. Beljonne, M. Bonn, H. I. Wang, R. Dong and X. Feng, Nat. Mater, 22, 880 (2023).
34. P. T. Phan, J. Hong, N. Tran and T. H. Le, Nanomaterials, 13, 352 (2023).
35. N. Han, Y. Wang, L. Ma, J. Wen, J. Li, H. Zheng, K. Nie, X. Wang,F. Zhao, Y. Li, J. Fan, J. Zhong, T. Wu, D. J. Miller, J. Lu, S. T. Lee and Y. Li, Chem. Soc. Rev., 3, 652 (2017).
36. N. Han, Y. Wang, L. Ma, J. Wen, J. Li, H. Zheng, K. Nie, X. Wang,F. Zhao, Y. Li, J. Fan, J. Zhong, T. Wu, D. J. Miller, J. Lu, S. T. Lee and Y. Li, Chem. Soc. Rev., 3, 652 (2017).
37. Y. Tanamura, T. Uchida, N. Teramae, M. Kikuchi, K. Kusaba and Y. Onodera, Nano Lett., 1, 387 (2001).
38. Y. Chung, K. H. Hyun and Y. Kwon, Nanoscale, 8, 1161 (2015).
39. Y. Chung, D. C. Tannia and Y. Kwon, Chem. Eng. J., 334, 1085 (2018).
40. J. Chen, K. Zou, P. Ding, J. Deng, C. Zha, Y. Hu, X. Zhao, J. Wu, J.Fan, Y. Li, J. M. Chen, K. Y. Zou, P. Ding, J. Deng, C. Y. Zha, Y. P.Hu, X. Zhao, J. L. Wu, J. Fan and Y. G. Li, Adv. Mater., 31, 1805484 (2019).
41. S. Wei, H. Zou, W. Rong, F. Zhang, Y. Ji and L. Le Duan, Appl.Catal. B., 284, 119739 (2021).
42. V. I. Korepanov and D. M. Sedlovets, Mater. Res. Express., 6, 5 (2019).
43. M. M. Coleman, A. M. Lichkus and P. C. Painter, Macromolecules,22, 586 (1989).
44. C. Lau, S. Zheng, Z. Zhong and Y. Mi, Macromolecules, 31, 7291 (1998).
45. D. Wöhrle and E. Preußner, Makromol. Chem., 186, 2189 (1985).
46. B. Ortiz, S. Park and N. Doddapaneni, Mater. Res. Express., 143,1800 (1996).
47. S. Jeon, H. An, J. Ji, Y. Kwon and Y. Chung, Int. J. Energy Res., 46,4142 (2022).
48. J. Ji, C. Noh, Y. Chung and Y. Kwon, J. Mater. Chem. C., 9, 14675 (2021).
49. S. Jeon, H. An, C. Noh, Y. Kwon and Y. Chung, Appl. Surf. Sci., 613,155962 (2023).
50. Y. Chung, Y. Ahn, M. Christwardana, H. Kim and Y. Kwon,Nanoscale, 8, 9201 (2016).
51. M. Christwardana, Y. Chung and Y. Kwon, NPG Asia Mater., 9,e386 (2017).
52. P. E. Cryer, S. N. Davis and H. Shamoon, Diabetes Care., 26, 1902 (2003).
53. H. An, C. Noh, S. Jeon, M. Shin, Y. Kwon and Y. Chung, Int. J.Energy Res., 46, 11802 (2022).
54. V. Mani, R. Devasenathipathy, S. M. Chen, S. T. Huang and V. S.Vasantha, Enzyme Microb. Technol., 66, 60 (2014).
55. S. Palanisamy, C. Karuppiah and S. M. Chen, Colloids Surf. B., 114,164 (2014).
56. J. D. Qiu, W. M. Zhou, J. Guo, R. Wang and R. P. Liang, Anal. Biochem., 385, 264 (2009).
57. Z. H. Dai, J. Ni, X. H. Huang, G. F. Lu and J. C. Bao, Bioelectrochemistry, 70, 250 (2007).
58. R. M. Pemberton, T. Cox, R. Tuffin, I. Sage, G. A. Drago, N. Biddle,J. Griffiths, R. Pittson, G. Johnson, J. Xu, S. K. Jackson, G. Kenna,R. Luxton and J. P. Hart, Biosens. Bioelectron., 42, 668 (2013).
59. S. Yang, Y. Yu, X. Gao, Z. Zhang and F. Wang, Chem. Soc. Rev., 50,12985 (2021).
60. S. De, T. Devic and A. Fateeva, Dalton Trans., 50, 1166 (2021).
61. A. Singh, S. Roy, C. Das, D. Samanta and T. K. Maji, Chem. Commun., 54, 4465 (2018)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로