ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 23, 2022
Accepted October 5, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Jammed microgels fabricated via various methods for biological studies

1Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Korea 2Department of Nano-Bioengineering, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, Korea 3Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea 4BioMAX Institute, Seoul National University, Seoul 08826, Korea
khsong@inu.ac.kr
Korean Journal of Chemical Engineering, February 2023, 40(2), 267-275(9), 10.1007/s11814-022-1310-1
downloadDownload PDF

Abstract

Microgels, hydrogels fabricated in microscale via various methods, can be jammed, and the jammed state can be influenced by some factors such as volume fraction (Ø), pressure and temperature. Compared to bulk hydrogels, jammed microgels have distinct characteristics. Structures of jammed microgels, stable through a balance of effective forces applied to them, can be changed by application of forces or pressure, implying shear-thinnning properties. Additionally, the ability to maintain structures under a static condition and porous internal structures of them has been extensively exploited in researches. Additional materials can be involved in jammed microgels for additional features (e.g., conductivity), and overall mechanical properties can be also controlled. These characteristics have been used in diverse biological studies by developing them as injectable scaffolds, drug delivery vehicles and inks and support bath in 3D printing processes. In this review, jamming processes, characteristics of jammed microgels, fabrication methods of microgels and applications of jammed microgels are discussed to provide a comprehensive understanding of jammed microgels and promote their use in diverse researches.

References

Cai W, Gupta RB, Kirk‐Othmer Encycl. Chem. Technol., 1 (2012)
Lee KY, Mooney DJ, Chem. Rev., 101, 1869 (2001)
Hoffman AS, Adv. Drug Deliv. Rev., 64, 18 (2012)
Daly AC, Riley L, Segura T, Burdick JA, Nat. Rev. Mater., 5, 20 (2020)
Riley L, Schirmer L, Segura T, Curr. Opin. Biotechnol., 60, 1 (2019)
Cheng W, Zhang J, Liu J, Yu Z, View, 1, 20200060 (2020)
Purdon Jr JR, Mate RD, J. Polym. Sci. A: Polym. Chem., 8, 1306 (1970)
Richtering W, Saunders BR, Soft Matter, 10, 3695 (2014)
Gogoi N, Chowdhury D, J. Mater. Chem. B, 2, 4089 (2014)
Hu X, Long L, Gong T, Zhang J, Yan J, Xue Y, Chemosphere, 240, 124860 (2020)
Sohail A, Turner MS, Prabawati EK, Coombes AGA, Bhandari B, Int. J. Food Microbiol., 157, 162 (2012)
Ketz RJ, Prud’homme RK, Graessley WW, Rheol. Acta, 27, 531 (1988)
Cates ME, Wittmer JP, Bouchaud JP, Claudin P, Phys. Rev. Lett., 81, 1841 (1998)
O’Hern CS, Silbert LE, Liu AJ, Nagel SR, Phys. Rev. E, 68, 19 (2003)
Liu AJ, Nagel SR, Nature, 396, 21 (1998)
Qazi TH, Muir VG, Burdick JA, ACS Biomater. Sci. Eng., 8, 1427 (2022)
Highley CB, Song KH, Daly AC, Burdick JA, Adv. Sci., 6, 1801076 (2019)
Moon D, Lee MG, Sun JY, Song KH, Doh J, Macromol. Rapid Commun., e2200271 (2022)
Charlet A, Hirsch M, Schreiber S, Amstad E, Small, 18, 2107128 (2022)
O’Bryan CS, Kabb CP, Sumerlin BS, Angelini TE, ACS Appl. Bio Mater., 2, 1509 (2019)
Mirdamadi E, Muselimyan N, Koti P, Asfour H, Sarvazyan N, 3D Print. Addit. Manuf., 6, 158 (2019)
Griffin DR, Weaver WM, Scumpia PO, Di Carlo D, Segura T, Nat. Mater., 14, 737 (2015)
Edwards SD, Hou S, Brown JM, Boudreau RD, Lee Y, Kim YJ, Jeong KJ, ACS Appl. Bio Mater., 5, 2786 (2022)
Miksch CE, Skillin NP, Kirkpatrick BE, Hach GK, Rao VV, White TJ, Anseth KS, Small, 18, 2200951 (2022)
Fang J, Koh J, Fang Q, Qiu H, Archang MM, Hasani-Sadrabadi MM, Miwa H, Zhong X, Sievers R, Gao DW, Lee R, Di Carlo D, Li S, Adv. Funct. Mater., 30, 2070289 (2020)
Pang Q, Zhao J, Zhang S, Zhang X, J. Biomater. Sci.-Polym. Ed., 31, 2252 (2020)
Bencherif SA, Sands RW, Ali OA, Li WA, Lewin SA, Braschler TM, Shih TY, Verbeke CS, Bhatta D, Dranoff G, Mooney DJ, Nat. Commun., 6, 7556 (2015)
Bencherif SA, Sands RW, Bhatta D, Arany P, Verbeke CS, Edwards DA, Mooney DJ, Proc. Natl. Acad. Sci., 109, 19590 (2012)
Duin S, Schütz K, Ahlfeld T, Lehmann S, Lode A, Ludwig B, Gelinsky M, Adv. Healthc. Mater., 8, 1801631 (2019)
Müller M, Becher J, Schnabelrauch M, Zenobi-Wong M, Biofabrication, 7, 035006 (2015)
Ouyang L, Highley CB, Rodell CB, Sun W, Burdick JA, ACS Biomater. Sci. Eng., 2, 1743 (2016)
Cao Y, Zhang C, Shen W, Cheng Z, Yu LL, Ping Q, J. Control. Release, 120, 186 (2007)
Ishii S, Kaneko J, Nagasaki Y, Biomaterials, 84, 210 (2016)
Desai RM, Koshy ST, Hilderbrand SA, Mooney DJ, Joshi NS, Biomaterials, 50, 30 (2015)
Silva EA, Mooney DJ, J. Thromb. Haemost., 5, 590 (2007)
Silva EA, Kim ES, Kong HJ, Mooney DJ, Proc. Natl. Acad. Sci., 105, 14347 (2008)
Jeon O, Lee YB, Hinton TJ, Feinberg AW, Alsberg E, Mater. Today Chem., 122, 61 (2019)
de Rutte JM, Koh J, Di Carlo D, Adv. Funct. Mater., 29, 1900071 (2019)
Xie ZT, Kang DH, Matsusaki M, Soft Matter, 17, 8769 (2021)
Basu A, Xu Y, Still T, Arratia PE, Zhang Z, Nordstrom KN, Rieser JM, Gollub JP, Durian DJ, Yodh AG, Soft Matter, 10, 3027 (2014)
Ikeda A, Berthier L, Biroli G, J. Chem. Phys., 138, 12A507 (2013)
Weeks ER, Stat. Phys. Complex Fluids, 2, 87 (2007)
Ellenbroek WG, Somfai E, van Hecke M, van Saarloos W, Phys. Rev. Lett., 97, 258001 (2006)
van Hecke M, J. Phys. Condens. Matter, 22, 33101 (2009)
Torquato S, Stillinger FH, Rev. Mod. Phys., 82, 2633 (2010)
Nussinov Z, Johnson P, Graf MJ, Balatsky AV, Phys. Rev. B, 87, 184202 (2013)
James NM, Xue H, Goyal M, Jaeger HM, Soft Matter, 15, 3649 (2019)
Ghosh A, Chaudhary G, Kang JG, Braun PV, Ewoldt RH, Schweizer KS, Soft Matter, 15, 1038 (2019)
Conley GM, Zhang C, Aebischer P, Harden JL, Scheffold F, Nat. Commun., 10, 1 (2019)
Jiang P, Yan C, Guo Y, Zhang X, Cai M, Jia X, Wang X, Zhou F, Biomater. Sci., 7, 1805 (2019)
Zhang H, Cong Y, Osi AR, Zhou Y, Huang F, Zaccaria RP, Chen J, Wang R, Fu J, Adv. Funct. Mater., 30, 1 (2020)
Xin S, Chimene D, Garza JE, Gaharwar AK, Alge DL, Biomater. Sci., 7, 1179 (2019)
Zhao P, Wang J, Chen C, Wang J, Liu G, Nandakumar K, Li Y, Wang L, Micromachines, 13, 200 (2022)
Shin M, Song KH, Burrell JC, Cullen DK, Burdick JA, Adv. Sci., 6, 1901229 (2019)
Hirsch M, Charlet A, Amstad E, Adv. Funct. Mater., 31, 2005929 (2021)
Moreira A, Carneiro J, Campos JBLM, Miranda JM, Microfluid. Nanofluidics, 25, 10 (2021)
Subramaniam AB, Abkarian M, Stone HA, Nat. Mater., 4, 553 (2005)
Zoratto N, Di Lisa D, de Rutte J, Sakib MN, e Silva ARA, Tamayol A, Di Carlo D, Khademhosseini A, Sheikhi A, Bioeng. Transl. Med., 5, 1 (2020)
Teh SY, Lin R, Hung LH, Lee AP, Lab Chip, 8, 198 (2008)
Seiffert S, Weitz DA, Polymer, 51, 5883 (2010)
Headen DM, García JR, García AJ, Microsystems Nanoeng., 4, 1 (2018)
Zhang J, Li X, Zhang D, Xiu Z, J. Microencapsul., 24, 303 (2007)
Lee BB, Ravindra P, Chan ES, Chem. Eng. Technol., 36, 1627 (2013)
Qayyum AS, Jain E, Kolar G, Kim Y, Sell SA, Zustiak SP, Biofabrication, 9, 025019 (2017)
Bressel TAB, Paz AH, Baldo G, Lima EOC, Matte U, Saraiva-Pereira ML, Genet. Mol. Biol., 31, 136 (2008)
Morimoto Y, Onuki M, Takeuchi S, Adv. Healthc. Mater., 6, 1 (2017)
Kim PH, Yim HG, Choi YJ, Kang BJ, Kim J, Kwon SM, Kim BS, Hwang NS, Cho JY, J. Control. Release, 187, 1 (2014)
Molley TG, Jalandhra GK, Nemec SR, Tiffany AS, Harley BAC, Hung T, Kilian KA, bioRxiv, 2020.08.30.274654 (2020).
Leong W, Lau TT, Wang DA, Acta Biomater., 9, 6459 (2013)
Lee A, Hudson AR, Shiwarski DJ, Tashman JW, Hinton TJ, Yerneni S, Bliley JM, Campbell PG, Feinberg AW, Science, 365, 482 (2019)
Roh S, Parekh DP, Bharti B, Stoyanov SD, Velev OD, Adv. Mater., 29, 1 (2017)
Gehlen DB, Jürgens N, Omidinia-Anarkoli A, Haraszti T, George J, Walther A, Ye H, De Laporte L, Macromol. Rapid Commun., 41, 1 (2020)
Song K, Compaan AM, Chai W, Huang Y, ACS Appl. Mater. Interfaces, 12, 22453 (2020)
Zhao D, Liu Y, Liu B, Chen Z, Nian G, Qu S, Yang W, ACS Appl. Mater. Interfaces, 13, 13714 (2021)
Hinton, Q. Jallerat, R. N. Palchesko, J. H. Park, M. S. Grodzicki, H.-J. Shue, M. H. Ramadan, A.R. Hudson and A.W. Feinberg, Sci. Adv., 1, e1500758 (2015)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로