Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 24, 2022
Accepted September 30, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Thermohypersensitive polydiacetylene vesicles embedded in calcium-alginate hydrogel beads
1Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea 2Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA 3Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea 4Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
sunmk@inha.ac.kr
Korean Journal of Chemical Engineering, February 2023, 40(2), 398-404(7), 10.1007/s11814-022-1306-x
Download PDF
Abstract
Polydiacetylenes (PDAs) are widely adapted materials for the development of sensors with liposome-like biomimetic structures, and the sensing results are often detectable with the naked eye. In addition, PDA-based sensors encapsulated within hydrogels have been intensively studied due to their superiority over solution-embedded-type and/ or solid-immobilized-type sensors. Hydrogel-type PDA sensors are more stable and equipped with physically controllable high surface areas and are thus potentially utilizable in many applications. However, PDAs have intrinsic color-transitioning properties when exposed to temperatures greater than 50-60 ℃, which cannot be used for more practical applications. In this study, we employed a calcium-alginate polymer to maximize the utility of a PDA-based hydrogeltype sensor and discovered that the sensor can be hypersensitive to temperature increases at a lower temperature range. We report the characterization of potential factors, gelation periods, and gelation agents that correlate with the sensitivity of the so-called PDA-alginate hydrogel. We expect that our findings can be applied in future research on industrially applicable developments for the maintenance of cold-chain delivery systems, temperature-sensitive chemicals, or food. Moreover, our materials will also provide a history of temperature changes because the corresponding color will not revert back even after the temperature decreases to the normal range.
Keywords
References
Wen JT, Roper JM, Tsutsui H, Ind. Eng. Chem. Res., 57(28), 9037 (2018)
Tian S, Li H, Li Z, Tang H, Yin M, Chen Y, Wang S, Gao Y, Yang X, Meng F, Lauher JW, Wang P, Luo L, Nat. Commun., 11(1), 1 (2020)
Wang DE, Yan J, Jiang J, Liu X, Tian C, Xu J, Yuan MS, Han X, Wang J, Nanoscale, 10(*), 4570 (2018)
Jang H, Lee P, Kim S, Kim SM, Jeon TJ, Microchim. Acta, 184(11), 4563 (2017)
Zhou C, You T, Jang H, Ryu H, Lee ES, Oh MH, Huh YS, Kim SM, Jeon TJ, Sensors, 20(11), 3124 (2020)
Park MK, Kim KW, Ahn DJ, Oh MK, Biosens. Bioelectron., 35(1), 44 (2012)
Silbert L, Shlush IB, Israel E, Porgador A, Kolusheva S, Jelinek R, Appl. Environ. Microbiol., 72(11), 7339 (2006)
Jung SH, Jang H, Lim MC, Kim JH, Shin KS, Kim SM, Kim HY, Kim YR, Jeon TJ, Anal. Chem., 87(4), 2072 (2015)
Hong J, Park DH, Baek S, Song S, Lee CW, Kim JM, ACS Appl. Mater. Interfaces, 7(15), 8339 (2015)
Yapor JP, Alharby A, Gentry-Weeks C, Reynolds MM, Alam AKMM, Li YV, ACS Omega, 2(10), 7334 (2017)
Bhattacharjee A, Clark R, Gentry-Weeks C, Li YV, Mater. Adv., 1(9), 3387 (2020)
Lee J, Kim J, Chem. Mater., 24(14), 2817 (2012)
Wang DE, Wang Y, Tian C, Zhang L, Han X, Tu Q, Yuan M, Chen S, Wang J, J. Mater. Chem. A, 3(43), 21690 (2015)
Kang DH, Jung HS, Ahn N, Yang SM, Seo S, Suh KY, Chang PS, Jeon NL, Kim J, Kim K, ACS Appl. Mater. Interfaces, 6(13), 10631 (2014)
Harano I, Okano C, Takayama Y, Nasuno E, Iimura K, Kato N, Appl. Mech. Mater., 863, 38 (2017)
Mapazi O, Matabola KP, Moutloali RM, Ngila CJ, Polymer, 149, 106 (2018)
Huo J, Hu Z, He G, Hong X, Yang Z, Luo S, Ye X, Li Y, Zhang Y, Zhang M, Chen H, Fan T, Zhang Y, Xiong B, Wang Z, Appl. Surf. Sci., 423, 951 (2017)
Kim H, Heo E, Shin MJ, Appl. Chem. Eng., 32(2), 219 (2021)
Park IS, Park HJ, Jeong W, Nam J, Kang Y, Shin K, Chung H, Kim JM, Macromolecules, 49(4), 1270 (2016)
Park CH, Kim JP, Lee SW, Jeon NL, Yoo PJ, Sim SJ, Adv. Funct. Mater., 19(23), 3703 (2009)
Choi Y, Jang J, Koo HJ, Tanaka M, Lee KH, Choi J, Biotechnol. Bioprocess Eng., 26(1), 71 (2021)
Park B, Ghoreishian SM, Kim Y, Park BJ, Kang SM, Huh YS, Chemosphere, 263, 128266 (2021)
Lee KY, Mooney DJ, Prog. Polym. Sci, 37(1), 106 (2012)
Kwon JH, Song JE, Yoon B, Kim JM, Cho EC, Bull. Korean Chem. Soc., 35(6), 1809 (2014)
Wang H, Yu J, Gao X, Ding H, IOP Conf. Ser. Mater. Sci. Eng., 729, 012088 (2020)
Oh J, Eom MS, Han MS, Analyst, 144(23), 7064 (2019)
Kolusheva S, Shahal T, Jelinek R, J. Am. Chem. Soc., 122(5), 776 (2000)
Mørch AA, Donati I, Strand BL, Skja G, Biomacromolecules, 7, 1471 (2006)
Erdem IG, Ak MM, J. Food Process. Preserv., 45(1), 1 (2021)
Wang DE, Gao X, Li G, Xue T, Yang H, Xu H, Sens. Actuators B-Chem., 289, 85 (2019)
Topuz F, Henke A, Richtering W, Groll J, Soft Matter, 8(18), 4877 (2012)
N’Tsoukpoe KE, Rammelberg HU, Lele AF, Korhammer K, Watts BA, Schmidt T, Ruck WKL, Appl. Therm. Eng., 75, 513 (2015)
Huang Q, Wu W, Ai K, Liu J, Front. Chem., 8, 1 (2020)
Pankaew A, Traiphol N, Traiphol R, Colloids Surf. A: Physicochem. Eng. Asp., 608, 125626 (2021)
Khanantong C, Charoenthai N, Phuangkaew T, Kielar F, Traiphol N, Traiphol R, Colloids Surf. A: Physicochem. Eng. Asp., 553, 337 (2018)
Tang J, Weston M, Kuchel RP, Lisi F, Liang K, Chandrawati R, Mater. Adv., 1(6), 1745 (2020)
Tian S, Li H, Li Z, Tang H, Yin M, Chen Y, Wang S, Gao Y, Yang X, Meng F, Lauher JW, Wang P, Luo L, Nat. Commun., 11(1), 1 (2020)
Wang DE, Yan J, Jiang J, Liu X, Tian C, Xu J, Yuan MS, Han X, Wang J, Nanoscale, 10(*), 4570 (2018)
Jang H, Lee P, Kim S, Kim SM, Jeon TJ, Microchim. Acta, 184(11), 4563 (2017)
Zhou C, You T, Jang H, Ryu H, Lee ES, Oh MH, Huh YS, Kim SM, Jeon TJ, Sensors, 20(11), 3124 (2020)
Park MK, Kim KW, Ahn DJ, Oh MK, Biosens. Bioelectron., 35(1), 44 (2012)
Silbert L, Shlush IB, Israel E, Porgador A, Kolusheva S, Jelinek R, Appl. Environ. Microbiol., 72(11), 7339 (2006)
Jung SH, Jang H, Lim MC, Kim JH, Shin KS, Kim SM, Kim HY, Kim YR, Jeon TJ, Anal. Chem., 87(4), 2072 (2015)
Hong J, Park DH, Baek S, Song S, Lee CW, Kim JM, ACS Appl. Mater. Interfaces, 7(15), 8339 (2015)
Yapor JP, Alharby A, Gentry-Weeks C, Reynolds MM, Alam AKMM, Li YV, ACS Omega, 2(10), 7334 (2017)
Bhattacharjee A, Clark R, Gentry-Weeks C, Li YV, Mater. Adv., 1(9), 3387 (2020)
Lee J, Kim J, Chem. Mater., 24(14), 2817 (2012)
Wang DE, Wang Y, Tian C, Zhang L, Han X, Tu Q, Yuan M, Chen S, Wang J, J. Mater. Chem. A, 3(43), 21690 (2015)
Kang DH, Jung HS, Ahn N, Yang SM, Seo S, Suh KY, Chang PS, Jeon NL, Kim J, Kim K, ACS Appl. Mater. Interfaces, 6(13), 10631 (2014)
Harano I, Okano C, Takayama Y, Nasuno E, Iimura K, Kato N, Appl. Mech. Mater., 863, 38 (2017)
Mapazi O, Matabola KP, Moutloali RM, Ngila CJ, Polymer, 149, 106 (2018)
Huo J, Hu Z, He G, Hong X, Yang Z, Luo S, Ye X, Li Y, Zhang Y, Zhang M, Chen H, Fan T, Zhang Y, Xiong B, Wang Z, Appl. Surf. Sci., 423, 951 (2017)
Kim H, Heo E, Shin MJ, Appl. Chem. Eng., 32(2), 219 (2021)
Park IS, Park HJ, Jeong W, Nam J, Kang Y, Shin K, Chung H, Kim JM, Macromolecules, 49(4), 1270 (2016)
Park CH, Kim JP, Lee SW, Jeon NL, Yoo PJ, Sim SJ, Adv. Funct. Mater., 19(23), 3703 (2009)
Choi Y, Jang J, Koo HJ, Tanaka M, Lee KH, Choi J, Biotechnol. Bioprocess Eng., 26(1), 71 (2021)
Park B, Ghoreishian SM, Kim Y, Park BJ, Kang SM, Huh YS, Chemosphere, 263, 128266 (2021)
Lee KY, Mooney DJ, Prog. Polym. Sci, 37(1), 106 (2012)
Kwon JH, Song JE, Yoon B, Kim JM, Cho EC, Bull. Korean Chem. Soc., 35(6), 1809 (2014)
Wang H, Yu J, Gao X, Ding H, IOP Conf. Ser. Mater. Sci. Eng., 729, 012088 (2020)
Oh J, Eom MS, Han MS, Analyst, 144(23), 7064 (2019)
Kolusheva S, Shahal T, Jelinek R, J. Am. Chem. Soc., 122(5), 776 (2000)
Mørch AA, Donati I, Strand BL, Skja G, Biomacromolecules, 7, 1471 (2006)
Erdem IG, Ak MM, J. Food Process. Preserv., 45(1), 1 (2021)
Wang DE, Gao X, Li G, Xue T, Yang H, Xu H, Sens. Actuators B-Chem., 289, 85 (2019)
Topuz F, Henke A, Richtering W, Groll J, Soft Matter, 8(18), 4877 (2012)
N’Tsoukpoe KE, Rammelberg HU, Lele AF, Korhammer K, Watts BA, Schmidt T, Ruck WKL, Appl. Therm. Eng., 75, 513 (2015)
Huang Q, Wu W, Ai K, Liu J, Front. Chem., 8, 1 (2020)
Pankaew A, Traiphol N, Traiphol R, Colloids Surf. A: Physicochem. Eng. Asp., 608, 125626 (2021)
Khanantong C, Charoenthai N, Phuangkaew T, Kielar F, Traiphol N, Traiphol R, Colloids Surf. A: Physicochem. Eng. Asp., 553, 337 (2018)
Tang J, Weston M, Kuchel RP, Lisi F, Liang K, Chandrawati R, Mater. Adv., 1(6), 1745 (2020)