ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 25, 2022
Accepted September 13, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Chitosan/oleamide blended electrospun nanofiber with enhanced spinnability and moderate hydrophobicity

Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea 1Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
biochoi@cnu.ac.kr
Korean Journal of Chemical Engineering, February 2023, 40(2), 405-411(7), 10.1007/s11814-022-1288-8
downloadDownload PDF

Abstract

Chitosan-based nanofibers have become attractive biomaterials for wound healing and dressing applications based on their intrinsic biocompatibility, biodegradability, and antibacterial properties. However, the unstable spinnability of chitosan-based nanofibers has impeded further applications. In this paper, a fatty acid amide oleamide was used as a blending material for nanofiber fabrication. The addition of oleamide into chitosan moderately decreased the viscosity of the electrospinning solution, resulting in enhanced spinnability when constructing chitosan/oleamide blended nanofibers. Remarkably, the 1 : 0.5 ratio of chitosan/oleamide nanofibers exhibited relatively high hydrophobicity, decreased tensile strength, and increased elongation at break compared to chitosan-only nanofiber. The nanofiber showed similar and slightly higher cell adhesion in the in vitro cell culture with mouse preosteoblast MC3T3-E1 and fibroblast NIH/3T3 cells, respectively; however, the cell proliferation levels were decreased on the blended nanofiber surfaces, presumably due to their increased hydrophobicity. These results suggest that chitosan/oleamide nanofibers with high spinnability can be applied to the preparation of wound dressing membranes or patches with intrinsic antibacterial properties and moderate hydrophobicity. We expect that oleamide, which has lubricant and antibacterial properties, can be utilized as a blending component of chitosan-based nanofibers for biomaterial and tissue engineering applications.

References

Xue JJ, Wu T, Dai YQ, Xia YN, Chem. Rev., 119, 5298 (2019)
Asghari S, Barati F, Avatefi M, Mahmoudifard M, Biotechnol. Bioprocess Eng., 26, 529 (2021)
Islam MS, Andriyana A, Afifi AM, Ang BC, SN Appl. Sci., 1, 1248 (2019)
Yin XY, Wang YQ, Yu H, Gao YX, He Y, Chen JY, Korean J. Chem. Eng., 37, 1751 (2020)
Braghirolli DI, Steffens D, Pranke P, Drug Discov. Today, 19, 743 (2014)
Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL, Adv. Drug Deliv. Rev., 59, 1413 (2007)
Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK, Adv. Drug Deliv. Rev., 97, 4 (2016)
Rnjak-Kovacina J, Tang F, Whitelock JM, Lord MS, Adv. Healthc. Mater., 7, e1701042 (2018)
Frantz C, Stewart KM, Weaver VM, J. Cell Sci., 123, 4195 (2010)
Keshvardoostchokami M, Majidi SS, Huo PP, Ramachandran RR, Chen ML, Liu B, Nanomaterials, 11, 21 (2021)
Abudula T, Mohammed HS, Navare KJ, Colombani T, Memic A, Bencherif SA, ACS Appl. Bio Mater., 2, 952 (2019)
Afifi AM, Jahangirian H, Webster TJ, Kalantari K, Carbohydr. Polym., 207, 588 (2019)
LogithKumar R, KeshavNarayan A, Dhivya S, Chawla A, Saravanan S, Selvamurugan N, Carbohydr. Polym., 151, 172 (2016)
Feng PP, Luo Y, Ke CH, Qiu HF, Wang W, Hou RX, Xu L, Wu SZ, Zhu YB, Front. Bioeng. Biotechnol., 9, 650598 (2021)
Baldwin AD, Kiick KL, Pept. Sci., 94, 128 (2010)
Kumaraswamy RV, Kumari S, Choudhary RC, Pal A, Raliya R, Biswas P, Saharan V, Int. J. Biol. Macromol., 113, 494 (2018)
Zhang Z, Jin FJ, Wu ZC, Jin J, Li F, Wang YL, Wang ZP, Tang SQ, Wang YF, Wu CX, Carbohydr. Polym., 177, 203 (2017)
Homayoni H, Valizadeh M, Ravandi SAH, Carbohydr. Polym., 77, 656 (2009)
Pérez-Nava A, Reyes-Mercado E, González-Campos JB, Chem. Eng. Process., 173, 108849 (2022)
Cha D, Kim H, Nishida A, Yamamoto H, Ohkawa K, Macromol. Rapid Commun., 25, 1600 (2004)
Seidi F, Yazdi MK, Jouyandeh M, Dominic M, Naeim H, Bagheri B, Habibzadeh S, Zarrintaj P, Saeb MR, Nezhad MN, Mozafari M, Int. J. Biol. Macromol., 183, 1818 (2021)
Mohebbi S, Zarrintaj P, Jafari SH, Gholizadeh SS, Nezhad MN, Saeb MR, Mozafari M, Curr. Stem Cell Res. Ther., 14, 93 (2019)
Rather AH, Wani TU, Khan RS, Pant B, Park M, Sheikh FA, Int. J. Mol. Sci., 22, 4017 (2021)
Datta S, Rameshbabu AP, Bankoti K, Maity PP, Das D, Pal S, Roy S, Sen R, Dhara S, ACS Biomater. Sci. Eng., 3, 1738 (2017)
Kang E, Moon E, Song W, Kim LH, Hyung JS, Jo JH, Park JH, Kim MS, Na JG, Choi YS, Chem. Eng. J., 433, 133846 (2022)
Getachew P, Getachew M, Joo J, Choi YS, Hwang DS, Hong YK, Toxicol. Environ. Health Sci., 8, 341 (2016)
Seo E, Seong MR, Lee JW, Lim H, Park J, Kim H, Hwang H, Lee D, Kim J, Kim GH, Hwang DS, Lee SJ, ACS Omega, 5, 11515 (2020)
Brunengo E, Alloisio M, Sionkowska A, Vicini S, Dodero A, Castellano M, Carbohydr. Polym., 235, 115976 (2020)
Yasuda K, Armstrong RC, Cohen RE, Rheol. Acta, 20, 163 (1981)
Bharti K, Kriel H, Simon Jr CG, Hotaling NA, Biomaterials, 61, 327 (2015)
Kang E, Je HH, Moon E, Na JG, Kim MS, Hwang DS, Choi YS, Carbohydr. Polym., 258, 117733 (2021)
Klossner RR, Queen HA, Coughlin AJ, Krause WE, Biomacromolecules, 9, 2947 (2008)
de Farias BS, Cadaval TRS, Pinto LAD, Int. J. Biol. Macromol., 123, 210 (2019)
Naguib HF, Morsi RE, Elsabee MZ, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 32, 1711 (2012)
Minato KI, Kumagai G, Hayashi S, Yamamoto H, Ohkawa K, Biomacromolecules, 7, 3291 (2006)
Areias AC, Sencadas V, Alio J, Ribelles JLG, Lanceros-Mendez S, Gomez-Tejedor JA, Polym. Eng. Sci., 52, 1293 (2012)
der Schueren LV, Steyaert I, Schoenmaker BD, Clerck KD, Carbohydr. Polym., 88, 1221 (2012)
Rodrigues AP, Sanchez EMS, da Costa AC, Moraes AM, J. Appl. Polym. Sci., 109, 2703 (2008)
Bueno CZ, Moraes AM, J. Appl. Polym. Sci., 122, 624 (2011)
Ogueri KS, Laurencin CT, ACS Nano., 14, 9347 (2020)
Wu CX, Chen T, Xin YJ, Zhang Z, Ren Z, Chu B, Wang YF, Lei J, Tang SQ, Biomed. Mater., 11, 035019 (2016)
Kulkarni GV, Mcculloch CAG, J. Cell Sci., 107, 1169 (1994)
Yu TT, Cui FZ, Meng QY, Wang J, Wu DC, Zhang J, Kou XX, Yang RL, Liu Y, Zhang YS, Yang F, Zhou YH, ACS Biomater. Sci. Eng., 3, 1119 (2017)
Yang F, Wang S, Ramakrishna S, Xu C, J. Biomed. Mater. Res. Part A., 71, 154 (2004)
Zamani Y, Mohammadi J, Visscher DO, Helder MN, Zandieh-Doulabi B, Klein-Nulend J, Amoabediny G, Biomed. Mater., 14, 015008 (2019)
Torres E, Vallés-Lluch A, Napiwocki B, Lih-Sheng T, Fombuena V, Macromol. Mater. Eng., 302, 1700259 (2017)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로