Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 27, 2022
Accepted August 28, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Vapor-phase synthesis of a robust polysulfide film for transparent, biocompatible, and long-term stable anti-biofilm coating
Hogi Kim1
Seonghyeon Park1
Younseong Song1
Wontae Jang1
Keonwoo Choi1
Kyoung G. Lee2
Eunjung Lee1†
Sung Gap Im1 3†
1Department of Chemical and Biomolecular Engineering, KAIST, Daejeon 34141, Korea 2Nano-bio Application Team, National Nanofab Center (NNFC), Daejeon 34141, Korea 3KAIST Institute for the NanoCentury (KINC), Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
ejung0608@kaist.ac.kr
Korean Journal of Chemical Engineering, February 2023, 40(2), 412-418(7), 10.1007/s11814-022-1275-0
Download PDF
Abstract
Biofilm formation caused by the fouling of microorganisms is one of the major problems in biomedical devices, food industry, and marine transportation. Since the removal of adherent biofilm is not a trivial task, it is of paramount importance to contain the formation of the anti-biofilm film. Herein, a polysulfide-based anti-biofilm coating (PAC) equipped with full transparency, non-toxicity, and environmental stability was developed via a simple vaporphase synthesis. The polymer coating consists of polysulfide chain grafted onto poly (1,3,5,7-tetramethyl-1,3,5,7-tetravinyl cyclotetrasiloxane) (pV4D4) layer via thiol-ene click reaction, which was accomplished via a sequential deposition of each polymer followed by UV irradiation. The pV4D4 served as an adhesion promoter layer that substantially enhanced the interfacial adhesion between polysulfide layer and various substrate materials. The polysulfide layer exhibits a long-lasting anti-biofilm performance against pathogenic bacteria, such as Escherichia coli: O157 and Staphylococcus aureus. The excellent anti-biofilm property is attributed to slippery surface derived from the non-adherent, dynamic characteristics of the polysulfide (-S-S-) chain. The anti-biofilm coating indeed shows outstanding durability and robustness when exposed to extreme pH, organic solvents, and mechanical stresses. The fully transparent, robust coating developed in this study is a promising candidate material for a broad range of anti-biofilm applications.
Keywords
References
Shapiro JA, Ann. Rev. Microbiol., 52, 81 (1998)
Gristina AG, Science, 237, 1588 (1987)
Choi Y, Kim YT, You JB, Jo SH, Lee SJ, Im SG, Lee KG, Food Chem., 270, 445 (2019)
Costerton JW, Stewart PS, Sci. Am., 285, 74 (2001)
Kumar CG, Anand SK, Int. J. Food Microbiol., 42, 9 (1998)
Chung KK, Schumacher JF, Sampson EM, Burne RA, Antonelli PJ, Brennana AB, Biointerphases, 2, 89 (2007)
Meyer B, Int. Biodeterior. Biodegrad., 51, 249 (2003)
Zhang L, Yan JW, Yin ZW, Tang C, Guo Y, Li D, Wei B, Xu Y, Gu QR, Wang LM, Int. J. Nanomedicine, 9, 3027 (2014)
Grozea CM, Walker GC, Soft Matter, 5, 4088 (2009)
Maan AMC, Hofman AH, de Vos WM, Kamperman M, Adv. Funct. Mater., 30, 2000936 (2020)
Gon S, Santore MM, Langmuir, 27, 15083 (2011)
Yang C, Ding X, Ono RJ, Lee H, Hsu LY, Tong YW, Hedrick J, Yang YY, Adv. Mater., 26, 7346 (2014)
Yu WF, Wang YX, Gnutt P, Wanka R, Krause LMK, Finlay JA, Clare AS, Rosenhahn A, ACS Appl. Bio Mater., 4, 2385 (2021)
Dong DY, Tsao C, Hung HC, Yao FL, Tang CJ, Niu LQ, Ma JR, MacArthur J, Sinclair A, Wu K, Jain P, Hansen MR, Ly D, Sci. Adv., 7, eabc5442 (2021)
Leng C, Sun S, Zhang K, Jiang S, Chen Z, Acta Biomaterialia, 40, 6 (2016)
Chae K, Jang WY, Park K, Lee J, Kim H, Lee K, Lee CK, Lee Y, Lee SH, Seo J, Sci. Adv., 5, eabb0025 (2020)
Guo ZG, Zhou F, Hao JC, Liu WM, J. Am. Chem. Soc., 127, 15670 (2005)
Genzer J, Efimenko K, Biofouling, 22, 339 (2006)
Poetes R, Holtzmann K, Franze K, Steiner U, Phys. Rev. Lett., 105, 166104 (2010)
Bohn HF, Federle W, Proc. National Acad. Sci. United States Am., 101, 14138 (2004)
Epstein AK, Wong TS, Belisle RA, Boggs EM, Aizenberg J, Proc. National Acad. Sci. United States Am., 109, 13182 (2012)
Wong TS, Kang SH, Tang SKY, Smythe EJ, Hatton BD, Grinthal A, Aizenberg J, Nature, 477, 443 (2011)
Kleine TS, Glass RS, Lichtenberger DL, Mackay ME, Char K, Norwood RA, Pyun J, ACS Macro Lett., 9, 245 (2020)
Martin R, Rekondo A, de Luzuriaga AR, Casuso P, Dupin D, Cabanero G, Grande HJ, Odriozola I, Smart Mater. Struct., 25, 084017 (2016)
Griebel JJ, Nguyen NA, Namnabat S, Anderson LE, Glass RS, Norwood RA, Mackay ME, Char K, Pyun J, ACS Macro Lett., 4, 862 (2015)
Xu R, Belharouak I, Li JCM, Zhang XF, Bloom I, Bareno J, Adv. Energy Mater., 3, 833 (2013)
Griebel JJ, Glass RS, Char K, Pyun J, Prog. Polym. Sci, 58, 90 (2016)
Kim DH, Jang W, Choi K, Choi JS, Pyun J, Lim J, Char K, Im SG, Sci. Adv., 6, eabb5320 (2020)
Jang W, Choi K, Choi JS, Kim D, Char K, Lim J, Im SG, ACS Appl. Mater. Interfaces, 13, 61629 (2021)
Kim H, Song Y, Park S, Kim Y, Mun H, Kim J, Kim S, Lee KG, Im SG, Adv. Funct. Mater., 32, 2113253 (2022)
Liu J, Sun YL, Zhou XT, Li XM, Kappl M, Steffen W, Butt HJ, Adv. Mater., 33, 2100237 (2021)
Li BY, Webster TJ, J. Orthop. Res., 36, 22 (2018)
Gristina AG, Science, 237, 1588 (1987)
Choi Y, Kim YT, You JB, Jo SH, Lee SJ, Im SG, Lee KG, Food Chem., 270, 445 (2019)
Costerton JW, Stewart PS, Sci. Am., 285, 74 (2001)
Kumar CG, Anand SK, Int. J. Food Microbiol., 42, 9 (1998)
Chung KK, Schumacher JF, Sampson EM, Burne RA, Antonelli PJ, Brennana AB, Biointerphases, 2, 89 (2007)
Meyer B, Int. Biodeterior. Biodegrad., 51, 249 (2003)
Zhang L, Yan JW, Yin ZW, Tang C, Guo Y, Li D, Wei B, Xu Y, Gu QR, Wang LM, Int. J. Nanomedicine, 9, 3027 (2014)
Grozea CM, Walker GC, Soft Matter, 5, 4088 (2009)
Maan AMC, Hofman AH, de Vos WM, Kamperman M, Adv. Funct. Mater., 30, 2000936 (2020)
Gon S, Santore MM, Langmuir, 27, 15083 (2011)
Yang C, Ding X, Ono RJ, Lee H, Hsu LY, Tong YW, Hedrick J, Yang YY, Adv. Mater., 26, 7346 (2014)
Yu WF, Wang YX, Gnutt P, Wanka R, Krause LMK, Finlay JA, Clare AS, Rosenhahn A, ACS Appl. Bio Mater., 4, 2385 (2021)
Dong DY, Tsao C, Hung HC, Yao FL, Tang CJ, Niu LQ, Ma JR, MacArthur J, Sinclair A, Wu K, Jain P, Hansen MR, Ly D, Sci. Adv., 7, eabc5442 (2021)
Leng C, Sun S, Zhang K, Jiang S, Chen Z, Acta Biomaterialia, 40, 6 (2016)
Chae K, Jang WY, Park K, Lee J, Kim H, Lee K, Lee CK, Lee Y, Lee SH, Seo J, Sci. Adv., 5, eabb0025 (2020)
Guo ZG, Zhou F, Hao JC, Liu WM, J. Am. Chem. Soc., 127, 15670 (2005)
Genzer J, Efimenko K, Biofouling, 22, 339 (2006)
Poetes R, Holtzmann K, Franze K, Steiner U, Phys. Rev. Lett., 105, 166104 (2010)
Bohn HF, Federle W, Proc. National Acad. Sci. United States Am., 101, 14138 (2004)
Epstein AK, Wong TS, Belisle RA, Boggs EM, Aizenberg J, Proc. National Acad. Sci. United States Am., 109, 13182 (2012)
Wong TS, Kang SH, Tang SKY, Smythe EJ, Hatton BD, Grinthal A, Aizenberg J, Nature, 477, 443 (2011)
Kleine TS, Glass RS, Lichtenberger DL, Mackay ME, Char K, Norwood RA, Pyun J, ACS Macro Lett., 9, 245 (2020)
Martin R, Rekondo A, de Luzuriaga AR, Casuso P, Dupin D, Cabanero G, Grande HJ, Odriozola I, Smart Mater. Struct., 25, 084017 (2016)
Griebel JJ, Nguyen NA, Namnabat S, Anderson LE, Glass RS, Norwood RA, Mackay ME, Char K, Pyun J, ACS Macro Lett., 4, 862 (2015)
Xu R, Belharouak I, Li JCM, Zhang XF, Bloom I, Bareno J, Adv. Energy Mater., 3, 833 (2013)
Griebel JJ, Glass RS, Char K, Pyun J, Prog. Polym. Sci, 58, 90 (2016)
Kim DH, Jang W, Choi K, Choi JS, Pyun J, Lim J, Char K, Im SG, Sci. Adv., 6, eabb5320 (2020)
Jang W, Choi K, Choi JS, Kim D, Char K, Lim J, Im SG, ACS Appl. Mater. Interfaces, 13, 61629 (2021)
Kim H, Song Y, Park S, Kim Y, Mun H, Kim J, Kim S, Lee KG, Im SG, Adv. Funct. Mater., 32, 2113253 (2022)
Liu J, Sun YL, Zhou XT, Li XM, Kappl M, Steffen W, Butt HJ, Adv. Mater., 33, 2100237 (2021)
Li BY, Webster TJ, J. Orthop. Res., 36, 22 (2018)