ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 8, 2022
Accepted September 23, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Patterning potential of the terminal system in the Drosophila embryo

1Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea 2Institute for Physical Science and Technology, University of Maryland,, College Park, MD 20742, United States, USA 3Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540, United States, USA 4Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, United States, Korea 5Center for Computational Biology, Flatiron Institute, Simon Foundation, New York, NY 10010, United States, Korea
Korean Journal of Chemical Engineering, February 2023, 40(2), 436-444(9), 10.1007/s11814-022-1298-6
downloadDownload PDF

Abstract

Segmentation of the Drosophila embryo is initiated by localized maternal signals. In this context, anteriorly localized Bicoid activates the gap genes in the anterior half of the embryo while posteriorly localized Nanos represses the translation of maternal hunchback mRNA to pattern the posterior half. The non-segmented termini are patterned by the localized activation of mitogen-activated protein kinase. Yet, the spatial extent of the terminal patterning system in regulating gap genes beyond poles remains unknown. We investigated the patterning potential of the terminal system using mutagenized embryos that lack both the anterior and the posterior maternal signaling systems. Using a combination of quantitative imaging and mathematical modeling, we analyzed the spatial patterns of gap genes in the early Drosophila embryo. We found that this mutant embryo develops symmetric cuticle patterns along the anteroposterior axis with two segments on each side. Notably, the terminal system can affect the expression of Kruppel in the torso region. Our mathematical model recapitulates the experimental data and reveals the potential bistability in the terminal patterning system. Collectively, our study suggests that the terminal system can act as a long-range inductive signal and establish multiple gene expression boundaries along the anteroposterior axis of the developing embryo.

References

Jaeger J, Manu, Reinitz J, Curr. Opin Genet. Dev., 22, 533 (2012)
Wieschaus E, Curr. Top Dev. Biol., 117, 567 (2016)
Casanova J, Struhl G, Genes Dev., 3, 2025 (1989)
Driever W, Nusslein-Volhard C, Cell, 54, 95 (1988)
Jaeger J, Cell Mol. Life Sci., 68, 243 (2011)
St Johnston D, Nusslein-Volhard C, Cell, 68, 201 (1992)
Akam M, Development, 101, 1 (1987)
Ephrussi A, St Johnston D, Cell, 116, 143 (2004)
Dubnau J, Struhl G, Nature, 379, 694 (1996)
Rivera-Pomar R, Niessing D, Schmidt-Ott U, Gehring WJ, Jackle H, Nature, 379, 746 (1996)
De Keuckelaere E, Hulpiau P, Saeys Y, Berx G, van Roy F, Cell Mol. Life Sci., 75, 1929 (2018)
Lehmann R, Nusslein-Volhard C, Development, 112, 679 (1991)
Wreden C, Verrotti AC, Schisa JA, Lieberfarb ME, Strickland S, Development, 124, 3015 (1997)
Furriols M, Casanova J, Embo J., 22, 1947 (2003)
Smits CM, Shvartsman SY, Curr. Top Dev. Biol., 137, 193 (2020)
Mineo A, Furriols M, Casanova J, Open Biol, 8, 180180 (2018)
Cinnamon E, Helman A, Schyr RBH, Orian A, Jimenez G, Paroush Z, Development, 135, 829 (2008)
Jimenez G, Guichet A, Ephrussi A, Casanova J, Genes Dev., 14, 224 (2000)
Kim Y, Coppey M, Grossman R, Ajuria L, Jimenez G, Paroush Z, Shvartsman SY, Curr. Biol., 20, 446 (2010)
Johnson HE, Goyal Y, Pannucci NL, Schupbach T, Shvartsman SY, Toettcher JE, Dev. Cell, 40, 185 (2017)
Coppey M, Boettiger AN, Berezhkovskii AM, Shvartsman SY, Curr. Biol., 18, 915 (2008)
Kim Y, Iagovitina A, Ishihara K, Fitzgerald KM, Deplancke B, Papatsenko D, Shvartsman SY, Chaos, 23, 025105 (2013)
Ashyraliyev M, Siggens K, Janssens H, Blom J, Akam A, Jaeger J, PLoS Comput. Biol., 5, e1000548 (2009)
Perkins TJ, Jaeger J, Reinitz J, Glass L, PLoS Comput. Biol., 2, e51 (2006)
Kim Y, Andreu MJ, Lim B, Chung K, Terayama M, Jimenez G, Berg CA, Lu H, Shvartsman SY, Dev. Cell, 20, 880 (2011)
Kim Y, Paroush Z, Nairz K, Hafen E, Jimenez G, Shvartsman SY, Mol. Syst. Biol., 7, 467 (2011)
Papatsenko D, Levine MS, Proc. Natl. Acad Sci. USA, 105, 2901 (2008)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로