Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 27, 2022
Revised November 20, 2022
Accepted December 4, 2022
- Acknowledgements
- This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) [Grant number NRF-2021R1A4A1024129].
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Impedimetric sensing platform based on copper oxide with activated carbon for sensitive detection of amoxicillin
Abstract
Copper oxide with activated carbon-based materials was synthesized for the selective detection of amoxicillin (AMX) in aqueous samples. The morphological and structural characteristics of the materials were evaluated using
a scanning electron microscope and X-ray diffraction. Electrochemical impedance spectroscopy and voltammetric
techniques were also used to observe the electrochemical response of the system. The best AMX sensing behavior was
obtained with the presence of copper oxide that interacts with AMX and the increased surface area of activated carbon, which results in a sharp oxidation current. The electrode showed two linear responses in the AMX concentration
ranges from 10 M to 100 M and from 1 mM to 5 mM, respectively. In the linear ranges, the sensitivity of the sensing materials was calculated to be 9.5528 M1
and 0.14994 M1
, respectively. The statistical test confirms that
the electrode showed good repeatability and selectivity in the determination of AMX
References
2. A. Hrioua, A. Loudiki, A. Farahi, M. Bakasse, S. Lahrich, S. Saqrane and M. A. El Mhammedi, Bioelectrochemistry, 137, 107687 (2021).
3. R. Sutherland, Microbiology, 34, 85 (1964).
4. M. G. El-sayed, A. A. El-komy, A. E. Elbarawy and G. E. Mustafa,J. Phys. Pharm. Adv., 4, 515 (2014).
5. S. Mathur, A. Fuchs, J. Bielicki, J. Van Den Anker and M. Sharland, Paediatr. Int. Child Health, 38, S66 (2018).
6. J. Fernández, I. A. C. Ribeiro, V. Martin, O. L. Martija, E. Zuza, A. F.Bettencourt and J.-R. Sarasua, Mater. Sci. Eng.: C, 93, 529 (2018).
7. K. Kümmerer, Chemosphere, 75, 417 (2009).
8. H. Mansouri, R. J. Carmona, A. Gomis-Berenguer, S. Souissi-Najar,A. Ouederni and C. O. Ania, J. Colloid Interface Sci., 449, 252(2015).
9. G. Yang and F. Zhao, Electrochim. Acta, 174, 33 (2015).
10. F. A. O. Joint and W. H. Organization, W. H. O. E. C. on Food Additives, and others, Toxicological evaluation of certain veterinary drug residues in food: prepared by the seventy-fifth meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA),World Health Organization (2012).
11. R. A. Figueroa and A. A. MacKay, Environ. Sci. Technol., 39, 6664(2005).
12. N. Erdinç, S. Göktürk and M. Tunçay, Colloids Surf. B: Biointerfaces, 75, 194 (2010).
13. H. Wang, N. Wang, B. Wang, Q. Zhao, H. Fang, C. Fu, C. Tang, F.Jiang, Y. Zhou, Y. Chen and Q. Jiang, Environ. Sci. Technol., 50,2692 (2016).
14. G. O. Androga, D. R. Knight, S.-C. Lim, N. F. Foster and T. V. Riley,Anaerobe, 54, 55 (2018).
15. A. Wong, A. M. Santos, F. H. Cincotto, F. C. Moraes, O. FatibelloFilho and M. D. P. T. Sotomayor, Talanta, 206, 120252 (2020).
16. K. M. Matar, Chromatographia, 64, 255 (2006).
17. L. Sun, L. Jia, X. Xie, K. Xie, J. Wang, J. Liu, L. Cui, G. Zhang, G.Dai and J. Wang, Food Chem., 192, 313 (2016).
18. G. Pajchel, K. Pawłowski and S. Tyski, J. Pharm. Biomed. Anal., 29,75 (2002).
19. A. Garcia-Reiriz, P. C. Damiani and A. C. Olivieri, Talanta, 71, 806(2007).
20. R. H. Barbhaiya, P. Turner and E. Shaw, Clin. Chim. Acta, 77, 373(1977).
21. F. A. Aly, N. A. Alarfaj and A. A. Alwarthan, Anal. Chim. Acta, 414,15 (2000).
22. A. P. Ball, P. G. Davey, A. M. Geddes, I. D. Farrell and G. R. Brookes,The Lancet, 315, 620 (1980).
23. D. Krasucka, C. Kowalski, M. Osypiuk and G. Opielak, Acta Chromatographica, 27, 55 (2015).
24. M. Akhond, G. Absalan and H. Ershadifar, Spectrochim. Acta Part A: Mol. Biomolec. Spectr., 143, 223 (2015).
25. D. C. Napoleão, R. B. Pinheiro, L. E. M. C. Zaidan, J. M. RodriguezDiaz, A. da N. Araújo, M. da C. Montenegro and V. L. da Silva,Desalination Water Treatment, 57, 10988 (2016).
26. B. Uslu and I. Biryol, J. Pharm. Biomed. Anal., 20, 591 (1999).
27. A. K. Jain, V. K. Gupta, L. P. Singh and J. R. Raisoni, Electrochim.Acta, 51, 2547 (2006).
28. P. Norouzi, V. K. Gupta, B. Larijani, M. R. Ganjali and F. Faridbod,Talanta, 127, 94 (2014).
29. S. Cheemalapati, B. Devadas and S.-M. Chen, J, Colloid Interface Sci., 418, 132 (2014).
30. V. K. Gupta, N. Mergu, L. K. Kumawat and A. K. Singh, Talanta,144, 80 (2015).
31. A. Muhammad, N. A. Yusof, R. Hajian and J. Abdullah, Sensors,16, 56 (2016).
32. Z. Guo, D.-D. Li, X.-K. Luo, Y.-H. Li, Q.-N. Zhao, M.-M. Li, Y.-T.Zhao, T.-S. Sun and C. Ma, J. Colloid Interface Sci., 490, 11 (2017).
33. Z. Shamsadin-Azad, M. A. Taher, S. Cheraghi and H. KarimiMaleh, J. Food Meas. Charact., 13, 1781 (2019).
34. H. Karimi-Maleh, M. Sheikhshoaie, I. Sheikhshoaie, M. Ranjbar, J.Alizadeh, N. W. Maxakato and A. Abbaspourrad, New J. Chem.,43, 2362 (2019).
35. H. Karimi-Maleh and O. A. Arotiba, J. Colloid Interface Sci., 560,208 (2020).
36. D. P. dos Santos, M. F. Bergamini and M. V. B. Zanoni, Int. J. Electrochem. Sci., 5, 1399 (2010).
37. A. Hrioua, A. Farahi, S. Lahrich, M. Bakasse, S. Saqrane and M. A.El Mhammedi, ChemistrySelect, 4, 8350 (2019).
38. S. J. Lyle and S. S. Yassin, Anal. Chim. Acta, 274, 225 (1993).
39. M.-H. Chiu, J.-L. Chang and J.-M. Zen, Electroanalysis: An international j. devoted to fundamental and practical aspects of electroanalysis, Wiley-VCH, New York (2009).
40. M. T. Feroze, S. K. Sami, D. Doonyapisut, B. Kim and C.-H. Chung,ChemElectroChem, 7, 730 (2020).
41. K. Zhuo, C. Y. An, P. K. Kannan, N. Seo, Y.-S. Park and C.-H.Chung, Korean J. Chem. Eng., 34, 1483 (2017).
42. Y.-S. Park, C. Y. An, P. K. Kannan, N. Seo, K. Zhuo, T. K. Yoo and C.-H. Chung, Appl. Surf. Sci., 389, 865 (2016).
43. T. M. Prado, F. H. Cincotto, F. C. Moraes and S. A. S. Machado,Electroanalysis, 29, 1278 (2017).
44. N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T.Eisenhart and J. L. Dempsey, J. Chem. Educ., 95, 197 (2018).
45. A. J. Bard and L. R. Faulkner, Electrochemical methods: Fundamentals and applications, 2nd Edition, Wiley-VCH, New York (2001).
46. E. Chrzescijanska, E. Wudarska, E. Kusmierek and J. Rynkowski, J.Electroanal. Chem., 713, 17 (2014).
47. G. Bhattacharya, A. Mathur, S. Pal, J. McLaughlin and S. S. Roy,Int. J. Electrochem. Sci., 11, 6370 (2016).
48. C. Tlili, K. Reybier, A. Géloën, L. Ponsonnet, C. Martelet, H. Ben Ouada, M. Lagarde and N. Jaffrezic-Renault, Anal. Chem., 75,3340 (2003).
49. M. F. Bergamini, M. F. S. Teixeira, E. R. Dockal, N. Bocchi and E. T. G. Cavalheiro, J. Electrochem. Soc., 153, E94 (2006).
50. R. Ojani, J.-B. Raoof and S. Zamani, Bioelectrochemistry, 85, 44(2012).
51. B. Norouzi and T. Mirkazemi, Russian J. Electrochem., 52, 37 (2016).
52. D. P. Santos, M. F. Bergamini and M. V. B. Zanoni, Sens. Actuators B: Chem., 133, 398 (2008).
53. H. Karimi-Maleh, F. Tahernejad-Javazmi, V. K. Gupta, H. Ahmar and M. H. Asadi, J. Mol. Liq., 196, 258 (2014).
54. Ľ. Švorc, J. Sochr, M. Rievaj, P. Tomčík and D. Bustin, Bioelectrochemistry, 88, 36 (2012).
55. B. Rezaei and S. Damiri, Electroanalysis, 21, 1577 (2009).
56. P. B. Deroco, R. C. Rocha-Filho and O. Fatibello-Filho, Talanta,179, 115 (2018).
57. C. Chen, X. Lv, W. Lei, Y. Wu, S. Feng, Y. Ding, J. Lv, Q. Hao and S.-M. Chen, Anal. Chim. Acta, 1073, 22 (2019).