ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 25, 2023
Revised February 16, 2023
Accepted February 18, 2023
Acknowledgements
This work was supported by the Korea Ministry of Trade, Industry and Energy (MOTIE) as “Development of NOx Removal Catalyst with Wide Temperature Window (No. 20005721)”
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Thermal regeneration characteristics of titanium isopropoxide-modified TiO2 for the removal of environmentally hazardous NOx in iron ore sintering process

1Material Technology Center, Korea Testing Laboratory, Seoul 08389, Korea 2Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34131, Korea 3Green Materials & Processes R&D Group, Ulsan Regional Division, Korea Institute of Industrial Technology, Ulsan 44413, Korea 4R&D Division, Hyundai Steel, Dangjin 31719, Korea
jscha@ktl.re.kr
Korean Journal of Chemical Engineering, April 2023, 40(4), 714-721(8), : 10.1007/s11814-023-1353-y
downloadDownload PDF

Abstract

The deactivation and thermal regeneration characteristics of a V2O5-WO3/TiO2 catalyst modified with titanium isopropoxide (TTIP) were investigated after it was applied for 2,400 h at 240 o C in a selective catalytic reduction (SCR) pilot plant to purify the exhaust gas from an iron ore sintering process in steelworks. Evolved gas analysis/mass spectrometry (EGA/MS) analysis was adopted to determine the temperature for thermal regeneration, and thermal treatment was performed at the determined temperature for 3 h in a N2 atmosphere. The catalysts (Fresh catalyst: NCat, used catalyst: U-Cat, and thermally regenerated catalyst: R-Cat-X (X is thermal regeneration temperature)) were analyzed by elemental analyzer, X-ray fluorescence (XRF, component analysis), Brunauer-Emmett-Teller (BET, specific surface area and porosity), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS, surface micro-structure and components), X-ray diffraction (XRD, crystalline structure), and Fourier-transform infrared (FTIR, surface functional group). Thermal regeneration of catalyst was evaluated by NOx removal efficiency, depending on the regeneration temperature. It was found that the deactivation of the catalyst occurred due to the reduction of specific surface area and porosity by ammonium (bi)sulfate (AS or ABS). The NOx removal efficiency of the R-Cat-400 and the R-Cat-500 reached to 98.5% and 99.1%, respectively. Due to the breakdown of AS and ABS during the thermal regeneration, those results were quite similar to those of the N-Cat. Although the NOx removal efficiency of the RCat-500 was higher than that of the R-Cat-400, the temperature for thermal regeneration needs to be determined under consideration of the emission of high concentration of SO2 emitted during thermal regeneration

References

1. J.-R. Youn, M.-J. Kim, S.-J. Lee, I.-S. Ryu, S. K. Jeong, K. Lee and S. G. Jeon, Korean J. Chem. Eng., 39, 2334 (2022).
2. O. A. Qamar, F. Jamil, M. Hussain, A. H. Al-Muhtaseb, A. Inayat,A. Waris, P. Akhter and Y.-K. Park, Chem. Eng. J., 454, 140240(2023).
3. J. E. Lee, Y. S. Ok, D. C. W. Tsang, J. H. Song, S.-C. Jung and Y.-K.Park, Sci. Total Environ., 719, 137405 (2020).
4. U. Asghar, S. Rafiq, A. Anwar, T. Iqbal, A. Ahmed, F. Jamil, M. S.Khurram, M. M. Akbar, A. Farooq, N. S. Shah and Y.-K. Park, J.Environ. Chem. Eng., 9(5), 106064 (2021).
5. J. Lee, W.-H. Chen and Y.-K. Park, Bioresour. Technol., 366, 128204(2022).
6. M. W. Seo, S. H. Lee, H. Nam, D. Lee, D. Tokmurzin, S. Wang and Y.-K. Park, Bioresour. Technol., 343, 126109 (2022).
7. H. W. Ryu, D. H. Kim, J. Jae, S. S. Lam, E. D. Park and Y.-K. Park,Bioresour. Technol., 310, 123473 (2020).
8. J.-Y. Kim, H. W. Lee, S. M. Lee, J. Jae and Y.-K. Park, Bioresour.Technol., 279, 373 (2019).
9. S. Oh, J. Lee, S. S. Lam, E. E. Kwon, J.-M. Ha, D. C. W. Tsang, Y. S.Ok, W.-H. Chen and Y.-K. Park, Bioresour. Technol., 342, 126067(2021).
10. S. Valizadeh, S. Pyo, Y.-M. Kim, H. Hakimian and Y.-K. Park, Chem.Eng. J., 450, 137971 (2022).
11. D. Lee, H. Nam, M. W. Seo, S. H Lee, D. Tokmurzin, S. Wang and Y.-K. Park, Chem. Eng. J., 447, 137501 (2022).
12. S. Moogi, S. S. Lam, W.-H. Chen, C. H. Ko, S.-C. Jung and Y.-K.Park, Bioresour. Technol., 366, 128209 (2022).
13. S. Valizadeh, H. Hakimian, A. Farooq, B.-H. Jeon, W.-H. Chen,S. H. Lee, S.-C. Jung, M. W. Seo and Y.-K. Park, Bioresour. Technol., 365, 128143 (2022).
14. S. Valizadeh, S.-H. Jang, G. H. Rhee, J. Lee, P. L. Show, M. A. Khan,B.-H. Jeon, K.-Y. A. Lin, C. H. Ko, W.-H. Chen and Y.-K. Park,Chem. Eng. J., 433, 133793 (2022).
15. S. Valizadeh, Y. Khani, A. Farooq, G. Kumar, P. L. Show, W.-H.Chen, S. H. Lee and Y.-K. Park, Bioresour. Technol., 372, 128638(2023).
16. H. Yim, S. Valizadeh, S. Pyo, S.-H. Jang, C. H. Ko, M. A. Khan, B.-H.Jeon, K.-Y. A. Lin and Y.-K. Park, Fuel, 338, 127243 (2023).
17. S. Valizadeh, Y. Khani, H. Yim, S. Chai, D. Chang, A. Farooq, P.-L.Show, B.-H. Jeon, M. A. Khan, S.-C. Jung and Y.-K. Park, Environ.Res., 219, 115070 (2023).
18. J. Seo, H. Kim, S. Jeon, S. Valizadeh, Y. Khani, B.-H. Jeon, G. H.Rhee, W.-H. Chen, S. S. Lam, M. A. Khan and Y.-K. Park, Bioresour. Technol., 373, 128702 (2023).
19. U. Shakeel, M. Hussain, R. Sheikh, A. Ahmed, M. S. Nazir, W. Yang,N. Shezad, P. Akhter and Y.-K. Park, Korean J. Chem. Eng., 38, 966(2021).
20. I. Riaz, I. Shafiq, F. Jamil, A. H. Al-Muhtaseb, P. Akhter, S. Shafique,Y.-K. Park and M. Hussain, Catal. Rev., in press (DOI: 10.1080/
01614940.2022.2108197) (2022).
21. S. Nawaz, F. Jamil, P. Akhter, M. Hussain, H. Jang and Y.-K. Park, J.Phys. Energy, 5, 012003 (2023).
22. H. P. R. Kannapu, S. Pyo, S. S. Lam, J. Jae, G. H. Rhee, M. A. Khan,B.-H. Jeon and Y.-K. Park, Bioresour. Technol., 359, 127500 (2022).
23. A. Farooq, S. S. Lam, G. H. Rhee, J. Lee, M. A. Khan, B.-H. Jeon and Y.-K. Park, Bioresour. Technol., 353, 127131 (2022).
24. J. Y. Seo, D. Tokmurzin, D. Lee, S. H. Lee, M. W. Seo and Y.-K.Park, Bioresour. Technol., 361, 127740 (2022).
25. P. Bhavani, D. P. Kumar, M. Hussain, K.-J. Jeon and Y.-K. Park,Catal. Rev., in press (DOI: 10.1080/01614940.2022.2038472) (2022).
26. P. Bhavani, D. P. Kumar, M. Hussain, T. M. Aminabhavi and Y.-K.Park, Chem. Eng. J., 434, 134743 (2022).
27. J. E. Lee, K.-J. Jeon, P. L. Show, I. H. Lee, S.-C. Jung, Y. J. Choi,G. H. Rhee, K.-Y. A. Lin and Y.-K. Park, Fuel, 308, 122048 (2022).
28. S. Lee, J. Lee and Y.-K. Park, ACS Sustainable Chem. Eng., 10(42),13972 (2022).
29. J. Lee, E. E. Kwon, S. S. Lam, W.-H. Chen, J. Rinklebe and Y.-K.Park, J. Clean. Prod., 321, 128989 (2021).
30. Y.-K. Park and J. Lee, Phytochem. Rev., in press (DOI: 10.1007/s11101-021-09788-8) (2022).
31. H.-S. Kim, S. Kasipandi, J. Kim, S.‐H. Kang, J.‐H. Kim, J.‐H. Ryu and J.‐W. Bae, Catalysts, 10, 52 (2020).
32. J.-S. Youn, S. Han, J.-S. Yi, D.-I. Kang, K.-W. Jang, Y.-W. Jung, Y.-K.Park and K.-J. Jeon, Environ. Res., 193, 110507 (2021).
33. Y.-K. Park, W. G. Shim, S.-C. Jung, H.-Y. Jung and S. C. Kim, Korean J. Chem. Eng., 39, 161 (2022).
34. The Government of the Republic of Korea, Comprehensive Plan on Fine dust Management (2017).
35. The Government of the Republic of Korea, Comprehensive Plan on Fine dust Management (2019).
36. S. Zhao, J. Peng, R. Ge, K. Yang, S. Wu, Y. Qian, T. e Xu, J. Gao, Y.Chen and Z. Sun, Process Saf. Environ. Prot., 168, 971 (2022).
37. Z. Liu, J. Han, L. Zhao, Y.-w. Wu, H.-x. Wang, X.-q. Pei, M.-x, Xu,Q. Lu and Y.-p. Yang, Appl. Catal. A: Gen., 587, 117263 (2019).
38. Y.-k. Yu, C. He, J.-s. Chen and X.-r. Meng, J. Fuel Chem. Tech., 40,1359 (2012).
39. S. Fu, G. Cao, G. Ou, F. Zhou and L. Li, Korean J. Chem. Eng., 39,1717 (2022).
40. W. Jin, C. Geng, Y. Wang, H. Ma, Y. Dong and F. Si, Korean J.Chem. Eng., 38, 771 (2021).
41. F. Gao, X. Jin, G. Wang, L. Sun, Y. Tan, R. Zhang, W. Zhao, J. Hou and R. Zhang, Environ. Eng. Res., 28(1), 210500 (2023).
42. L. Zhao, Y. Zhang and M. Kang, Environ. Eng. Res., 27(1), 200642(2022).
43. Y.-J. Jung, J.-S. Cha, S.-J. Lim, J.-W. Park, M.-C. Shin and Y.-K.Park, Energy Environ., 0958305X221101152 (2022).
44. X. Zhang, Q. Diao, X. Hu, X. Wu, K. Xiao and J. Wang, Nanomaterials, 10, 1900 (2020).
45. L. Song, J. Chao, Y. Fang, H. He, J. Li, W. Qiu and G. Zhang, Chem.Eng. J., 303, 275 (2016).
46. S. T. Choo, S. D. Yim, I.-S. Nam, S.-W. Ham and J.-B. Lee, Appl.Catal. B: Environ., 44(3), 237 (2003).
47. K. Guo, J. Ji, W. Song, J. Sun, C. Tang and L. Dong, Appl. Catal. B:Environ., 297, 120388 (2021).
48. T. Lee and H. Bai, AIMS Environ. Sci., 3(2), 261 (2016).
49. C. H. Lee, J. H. Choi, M. S. Kim, B. H. Seo, C. H. Kang and D.-H.Lim, Clean Technol., 27(4), 332 (2021).
50. H. Zhu, L. Song, K. Li, R. Wu, W. Qiu and H. He, Catalysts, 12, 341(2022).
51. X. Guo, C. Bartholomew, W. Hecker and L. L. Baxter, Appl. Catal.B: Environ., 92(1-2), 30 (2009).
52. L. Xu, C. Wang, H. Chang, Q. Wu, T. Zhang and J. Li, Environ. Sci.Tech., 52(12), 7064 (2018).
53. P. Li, Q. Liu and Z. Liu, Chem. Eng. J., 181-182, 169 (2012).
54. Z. Zhu, H. Niu, Z. Liu and S. Liu, J. Catal., 195(2), 268 (2000).
55. C. Tang, H. Zhang and L. Dong, Catal. Sci. Tech., 6, 1248 (2016).
56. L.-g. Wei, R.-t. Guo, J. Zhou, B. Qin, X. Chen, Z.-x. Bi and W.-g.Pan, Fuel, 316, 123438 (2022).
57. Y. Peng, W. Jiang, Y. Liu, L. Yao, Y. Chen and L. Yang, J. Environ.Chem. Eng., 10, 108799 (2022).
58. D. Damma, P. R. Ettireddy, B. M. Reddy and P. G. Smioniotis, Catalysts, 9(4), 349 (2019).
59. G. Xu, X. Guo, X. Cheng, J. Yu and B. Fang, Nanoscale, 13(15), 7052(2021).
60. G. Lee, B. Ye, M.-j. Lee, S.-Y. Chun, B. Jeong, H.-D. Km, J. Jae and T. Kim, J. Ind. Eng. Chem., 109, 422 (2022).
61. X. Shang, G. Hu, C. He, J. Zhao, F. Zhang, Y. Xu, Y. Zhang, J. Li and J. Chen, Ind. Eng. Chem., 18, 513 (2012).
62. S. Zhao, J. Peng, R. Ge, K. Yang, S. Wu, Y. Qian, T. Xu, J. Gao, Y.Chen and Z. Sun, Process Saf. Environ., 168, 971 (2022).
63. H. Pan, E.-h. Gao, T.-t. Fang, Y. Mei, Y. He and Y. Shi, Appl. Surf.Sci., 541, 148408 (2021).
64. Y. Shi, P. Zhang, T. Fang, E. Gao, F. Xi, T. Shou, M. Tao, S. Wu,
M. T. Bernards, Y. He and H. Pan, Catal. Comm., 116, 57 (2018).
65. N. Zhao, S. Pan and Z. Wei, Adv. Mat. Res., 807-809, 1431 (2013).
66. L. Zong, F. Dong, G. Zhang, W. Han, Z. Tang and J. Zhang, Catal.Surv. Asia, 21, 103 (2017).
67. S. Cimino, C. Ferone, R. Cio, G. Perillo and L. Lisi, Catalysts, 9, 464(2019).
68. Y. Wang, W. Yi, J. Yu, J. Zeng and H. Chang, Environ. Sci. Tech., 54,12612 (2020).
69. X. Wang, X. Du, L. Zhang, Y. Chen, G. Yang and J. Ran, Appl. Catal.A: Gen., 559, 112 (2018)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로