Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 29, 2022
Revised November 23, 2022
Accepted December 11, 2022
- Acknowledgements
- This work was supported by the Technology Development Program (S3038568) funded by the Ministry of SMEs and Startups (MSS, Korea). This work also supported by the National Research Foundation of Korea funded by the Ministry of Science, ICT and Fusion Research (NRF-20201G1A1014959, NRF-2022R1I1A1 A01064248, 2021R1A4A2001658, and 2022R1A2C1003853). This work also supported by the National Research Foundation Korea funded by the Ministry of Science, ICT and Fusion Research (Grant No: 20201G1A1014959). Partiall
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Dopant-induced red emission, paramagnetism, and hydrogen evolution of diluted magnetic semiconductor ZnS : Eu nanoparticles
Abstract
Cubic-structured europium (Eu) doped zinc sulfide (ZnS) nanoparticles (NPs) were prepared via refluxing
at 150 o
C. Absolute structural studies showed that Eu+
ions were successfully substituted into the ZnS host lattice and
changed the original structure of the host. As-fabricated ZnS:Eu NPs exhibited typical red emission due to the transition of the Eu dopant in the 5
d0-
7
f1, 5
d0-
7
f2, 5
d0-
7
f3, and 5
d0-
7
f4 energy levels of the 4f orbital of the dopant. The typical
diamagnetic ZnS could be converted to tunable paramagnetic as a function of Eu-doping content. These NPs were
quantified for hydrogen evolution through water splitting by artificial solar spectrum. Eu doping can drastically
enhance the hydrogen (H2) evolution capability of ZnS, which is higher than that of bare ZnS NPs. The causes behind
these engrossing results will be revealed. These interesting properties may find applications in optoelectronics, spintronics, and H2 evolution.
References
2. H. Q. Huang, J. L. Liu, B. F. Han, C. C. Mi and S. K. Xu, J. Lumin.,132, 1003 (2012).
3. B. Poornaprakash, S. Ramu, K. Subramanyam, Y. L. Kim, M. Kumar and S. P. R. Mallem, Ceram. Int., 47, 18557 (2021).
4. B. Poornaprakash, U. Chalapathi, M. Kumar, S. Ramu, S. V. P. Vattikuti and S.-H. Park, Mater. Lett., 273, 127887 (2020).
5. P. Puneetha, S. P. R. Mallem, B. Poornaprakash, J.-H. Lee and J.Shim, Nano Energy, 84, 105923 (2021).
6. C. Zhang, S. Liu, X. Liu, F. Deng, Y. Xiong and F. C. Tsai, R. Soc.Open Sci., 5, 171712 (2018).
7. G. T. Chavan, A. Sikora, N. B. Chaure, L. P. Deshmukh and C.-W.Jeon, Mater. Lett., 320, 132353 (2022).
8. G. T. Chavan, A. Yadav, B. Y. Fugare, N. M. Shinde, M. S. Tamboli,S. S. Kamble, A. Sikora, J. Warycha, B. J. Lokhande, S.-W. Kang, A.
Kim and C.-W. Jeon, J. Alloys Compd., 901, 162822 (2022).
9. G. T. Chavan, A. Sikora, R. C. Pawar, J. Warycha, P. J. Morankar and C.-W. Jeon, Ceram. Int., 49, 282 (2022).
10. G. T. Chavan, N. M. Shinde, F. A. Sabah, S. S. Patil, A. Sikora, V. M.Prakshale, S. S. Kamble, N. B. Chaure, L. P. Deshmukh, A. Kim andC.-W. Jeon, Appl. Surf. Sci., 574, 151581 (2022).
11. A. A. Ansari, A. K. Parchur, B. Kumar and S. B. Rai, J. Mater. Sci.Mater. Med., 27, 178 (2016).
12. J. Y. Park, E. J. Jeon, Y. H. Choa and B. S. Kim, J. Lumin., 208, 145(2019).
13. M. M. Ferrer, Y. V. B. Santana, C. W. Raubach, F. L. A. Porta, A. F.Gouveia, E. Longo and J. R. Sambrano, J. Mol. Model., 20, 2375(2014).
14. G. S. Lotey, Z. Jindal, V. Singhi and N. K. Verma, Mater. Sci. Semicond. Process., 16, 2044 (2013).
15. I. Ahemen, K. Dilip and O. C. Melludu, Adv. Sci. Eng. Med., 5, 1188(2013).
16. S. Horoz, B. Yakami, U. Poudyal, J. M. Pikal, W. Wang and J. Tang,AIP Adv., 6, 045119 (2016).
17. I. V. Beketov, A. P. Safronov, A. I. Medvedev, J. Alonso, G. V. Kurlyandskaya and S. M. Bhagat, AIP Adv., 2, 022154 (2012).
18. S. C. Qu, W. H. Zhou, F. Q. Liu, N. F. Chen and Z. G. Wang, Appl.Phys. Lett., 80, 3605 (2002).
19. D. A. Reddy, G. Murali, R. P. Vijayalakshmi and B. K. Reddy, Appl.Phys. A, 105, 119 (2011).
20. K. Ashwini, C. Pandurangappa and B. M. Nagabhushana, Phys.Scr., 85, 065706 (2012).
21. Y. Wang, X. Liang, E. Liu, X. Hu and J. Fan, Nanotechnology, 26,375601 (2015).
22. V. Martyshkin, V. V. Fedorov, C. Kim, I. S. Moskalev and S. B. Mirov,J. Opt., 12, 024005 (2010).
23. H. Nelkowski and G. Grebe, J. Lumin., 1-2, 88 (1970).
24. M. Pal, N. R. Mathews, E. R. Morales, J. M. G. Jiménez and X.Mathew, Opt. Mater., 35, 2664 (2013).
25. B. Poornaprakash, S. V. P. Vattikuti, K. Subramanyam, R. Cheruku,K. C. Devarayapalli, Y. L. Kim, V. R. M. Reddy, H. Park and M. S. P.Reddy, Ceram. Int., 47, 28976 (2021).
26. B. Poornaprakash, D. A. Reddy, G. Murali, N. M. Rao, R. P. Vijayalakshmi and B. K. Reddy, J. Alloys Compd., 577, 79 (2013).
27. T. Naohito, K. Hideaki and K. Giyuu, J. Appl. Phys., 93, 6957 (2003).
28. B. Poornaprakash, P. T. Poojitha, U. Chalapathi and S. H. Park,Mater. Lett., 181, 227 (2016).