ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 26, 2022
Revised October 15, 2022
Accepted November 23, 2022
Acknowledgements
The authors are grateful for National project funding for National Natural Science Foundation of China under Grant No. 52074159; Key R & D programs under Grant No. 2018YFC0808500; Key National Natural Science Foundation of China under Grant No. 51834007.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Mathematical programming model of process plant safety layout using the equipment vulnerability index

1College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211816, China 2School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, Chin
wangzhirong@njtech.edu.cn
Korean Journal of Chemical Engineering, April 2023, 40(4), 723-729(7), 10.1007/s11814-022-1357-z
downloadDownload PDF

Abstract

Safety is the focus of attention in plant layout problems. Previous studies have often expressed safety as a cost of risk, that is, the cost of property losses that may occur in an accident. In this paper, the influence of uncertainty on the equipment vulnerability is quantitatively considered and a more reliable process plant layout is proposed. The equipment vulnerability index is used to evaluate the vulnerability level of the target equipment in case of an accident, which is applied to propose a mixed-integer nonlinear optimized process plant layout to minimize domino risk. In addition, a decision matrix is applied to determine whether the risk level of the optimized layout of the target equipment is acceptable. Damage probability and vulnerability are the basic inputs of this matrix. The proposed method was applied to a coal-water slurry gasification process and the results show that the layout obtained by the proposed model has better practical value than the current layout, reducing the domino risk by 53.2%. Meanwhile, the model can be used to identify critical equipment and select targeted safety measures during the production stage.

References

1. H. Chen, L. Yang, P. H. Zhang and A. Harrison, Energy Strategy Rev., 4, 28 (2014).
2. L. Wang, F. Yan, F. Wang and Z. Li, Process Saf. Environ. Prot., 149,299 (2021).
3. D. I. Patsiatzis, G. Knight and L. G. Papageorgiou, Chem. Eng. Res.Des., 82(5), 579 (2004).
4. F. D. Penteado and A. R. Ciric, Ind. Eng. Chem. Res., 35(4), 1354(1996).
5. C. Castell, R. Lakshmanan, J. Skilling and R. Banares-Alcantara,Comp. Chem. Eng., 22, S993 (1998).
6. K. Park, D. Shin and W. Won, Korean J. Chem. Eng., 35, 1053 (2018).
7. S. Jung, D. Ng, C. Diaz-Ovalle, R. Vazquez-Roman and M. S. Mannan, Ind. Eng. Chem. Res., 50(7), 3928 (2011).
8. A. López-Molina, R. Vázquez-Román, M. S. Mannan and M. G.Félix-Flores, J. Loss Prev. Process. Ind., 26(5), 887 (2013).
9. E. Hollnagel, J. Paries, D. D. Woods and J. Wreathall, Resilience engineering in practice: A guidebook, Ashgate, Farnham, UK (2011).
10. S. Guha and S. K. Das, Adv. Mater. Res., 917, 232 (2014).
11. S. Guha and S. K. Das, Int. J. Comp. Sci. Information Technologies,6(4) (2015).
12. L. Ed-daoui, A. E. Hami, M. Itmi, N. Hmina and T. Mazri, Saf. Sci.,115, 446 (2019).
13. S. Cincotta, N. Khakzad, V. Cozzani and G. Reniers, J. Loss Prev.Process. Ind., 59, 82 (2019).
14. N. Medina-Herrera, A. Jiménez-Gutiérrez and I. E. Grossmann,Comput. Chem. Eng., 68, 165 (2014).
15. K. Park, D. Shin and W. Won, Korean J. Chem. Eng., 35, 1053 (2018).
16. J. de Lira-Flores, R. Vázquez-Román, A. López-Molina and M. S.Mannan, J. Loss Prev. Process. Ind., 30, 219 (2014).
17. R. Q. Wang, Y. Wu, Y. F. Wang, X. Feng and M. X. Liu, Comput.Aided Chem. Eng., 47, 89 (2019).
18. J. O. Ejeh, S. Liu and L. G. Papageorgiou, Process Saf. Environ. Prot.,148, 137 (2021).
19. C. Díaz-Ovalle, R. Vázquez-Román, J. de Lira-Flores and M. S.Mannan, Comput. Chem. Eng., 56, 218 (2013).
20. J. A. de Lira-Flores, A. López-Molina, C. Gutiérrez-Antonio and R.Vázquez-Román, Process Saf. Environ. Prot., 124, 97 (2019).
21. B. Jung and C. J. Lee, Process Saf. Environ. Prot., 132, 285 (2019).
22. E. Zarei, N. Khakzad, V. Cozzani and G. Reniers, J. Loss Prev. Process. Ind., 57, 7 (2019).
23. R. Ferdous, F. Khan, R. Sadiq, P. Amyotte and B. Veitch, Risk Anal.,31, 86 (2011).
24. R. Ferdous, F. Khan, B. Veitch and P. R. Amyotte, Process Saf. Environ. Protect., 87, 217 (2009).
25. A. S. Markowski and M. S. Mannan, J. Loss Prev. Process. Ind., 22,921 (2009).
26. P. A. M. Uijt de Haag and B. J. M. Ale, Guidelines for Quantitative Risk Assessment (Purplebook), The Hague (NL) (2005).
27. N. Khakzad, F. Khan, P. Amyotte and V. Cozzani, Risk Analy., 33(2),292 (2013).
28. C. Cozzani and E. Salzano, J. Hazard. Mater., 107, 67 (2004).
29. V. Cozzani, G. Gubinelli, G. Antonioni, G. Spadoni and S. Zanelli,J. Hazard. Mater., 127, 14 (2005).
30. V. Cozzani, G. Gubinelli and E. Salzano, J. Hazard. Mater., 129(1-3),1 (2006).
31. N. Khakzad, G. Reniers, R. Abbassi and F. Khan, Reliab. Eng. Syst.Saf., 154, 127 (2016).
32. L. Ding, F. Khan and J. Ji, Reliab. Eng. Syst. Saf., 217, 108081 (2022).
33. N. Khakzad and G. Reniers, Reliab. Eng. Syst. Saf., 143, 63 (2015).
34. Dow, Dow Fire and Explosion Index hazard Classification Guide (7th ed.). American Institute of Chemical Engineers, New York(1994).
35. A. Tugnoli, V. Cozzani, F. Khan and P. Amyotte, Domino Effects in the Process Industries, 246 (2013).
36. G. Landucci, F. Argenti, G. Spadoni and V. Cozzani, J. Loss Prev.Process. Ind., 44, 706 (2016).
37. N. Khakzad, G. Landucci and G. Reniers, Reliab. Eng. Syst. Saf.,167, 232 (2017).
38. J. L. Jin, Y. M. Wei and J. Ding, J. Hydraul. Eng., 2, 144 (2004).
39. T. L. Saaty, Eur. J. Operational Res., 48(1), 9 (1990).
40. H. Ni, A. Chen and N. Chen, Saf. Sci., 48(10), 1269 (2010).
41. J. O. Ejeh, S. Liu, M. M. Chalchooghi and L. G. Papageorgiou, Ind.Eng. Chem. Res., 57, 10482 (2018).
42. O. Christian, V. Rico-Ramirez and E. O. Castrejón-González, Chem.Eng. Res. Des., 165, 137 (2021).
43. A. C. van den Berg and A. L. Mos, TNO Prins Maurits Laboratory: Rijswijk, The Netherlands (2005).
44. C. Castell, R. Lakshmanan, J. Skilling and R. Banares-Alcantara,Comp. Chem. Eng., 22, S993 (1998).
45. N. Medina-Herrera, A. Jiménez-Gutiérrez and I. E. Grossmann,Comput. Chem. Eng., 68, 165 (2014).
46. CCPS, Guidelines for consequence analysis of chemical releases.New York, New York: Center for chemical process safety of the AIChE (1999).
47. A. López-Molina, R. Vázquez-Román, M. S. Mannan and M. G.Félix-Flores, J. Loss Prev. Process. Ind., 26(5), 887 (2013).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로