ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 1, 2022
Revised September 14, 2022
Accepted November 6, 2022
Acknowledgements
The authors gratefully acknowledge the support of the calculation resource provided by professor Jianguo Yu.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

An investigation on the effect of open hole number and scheme on single-phase flow of a swirl flow bubble generator

1National Engineering Research Center for Integrated Utilization of Salt Lake Resource, East China University of Science and Technology, Shanghai 200237, China 2Joint International Laboratory for Potassium and Lithium Strategic Resources, East China University of Science and Technology, Shanghai 200237, China
chenhang@ecust.edu.cn, xfsong@ecust.edu.cn
Korean Journal of Chemical Engineering, April 2023, 40(4), 754-769(16), 10.1007/s11814-022-1343-5
downloadDownload PDF

Abstract

A swirl flow bubble generator with a unique adjustment scheme was developed to adapt to liquid feed flow rate variation. However, a study on the scheme and flow field of the bubble generator has not been reported in the literature. Particle image velocimetry and computational fluid dynamics were utilized to explore the flow field and adjustment scheme. The results showed that the standard k- model could more accurately describe the flow pattern than other turbulence models, and the pressure drop difference between experiments and simulations was less than 6%. A mathematical expression was established to quantitatively describe the relationship among the pressure drop, open hole number, and liquid flow rate. The pressure drop was proportional to the feed flow rate or inlet velocity square and inversely proportional to the power of 1.86 of the open hole number. Interestingly, the pressure drop of different open hole schemes with the same open hole number of 12 was close to 55 kPa. The spiral-bottom open hole schemes could provide a higher turbulent dissipation rate for both the vortex chamber and straight pipe section. This work can guide the bubble generator adjustment and fill the gap in this respect.

References

1. H. X. Xu, J. T. Liu, L. H. Gao, Y. T. Wang, X. W. Deng and X. B. Li,Sep. Sci. Technol., 49, 1170 (2014).
2. X. L. Cai, J. Q. Chen, M. L. Liu, Y. P. Ji and S. An, Sep. Purif. Technol., 176, 134 (2017).
3. J. Saththasivam, K. Loganathan and S. Sarp, Chemosphere, 144,671 (2016).
4. Q. Huang and X. Y. Long, Energies, 13, 927 (2020).
5. Y. R. Feng, H. F. Mu, X. Liu, Z. L. Huang, H. M. Zhang, J. D. Wang and Y. R. Yang, Ind. Eng. Chem. Res., 59, 8447 (2020).
6. Y. F. Wang, Z. C. Pan, J. Fen and Q. W. Qing, Miner. Eng., 145,106066 (2020).
7. B. Q. Xie, C. J. Zhou, J. X. Chen, X. T. Huang and J. S. Zhang, Chem.Eng. Sci., 247, 117105 (2022).
8. H. S. Alam, P. Sutikno, T. A. Fauzi Soelaiman and A. T. Sugiarto,Eng. Appl. Comp. Fluid Mech., 16, 677 (2022).
9. K. Terasaka, A. Hirabayashi, T. Nishino, S. Fujioka and D. Kobayashi,Chem. Eng. Sci., 66, 3172 (2011).
10. Y.-B. Kim, H.-S. Lee, L. Francis and Y.-D. Kim, J. Membr. Sci., 588,117197 (2019).
11. X. Y. Wang, Y. Shuai, X. R. Zhou, Z. L. Huang, Y. Yang, J. Y. Sun,H. M. Zhang, J. D. Wang and Y. R. Yang, Chem. Eng. Process., 154,108022 (2020).
12. M. Wu, S. Y. Yuan, H. Y. Song and X. B. Li, Chem. Eng. Process.,170, 108697 (2022).
13. I. Levitsky, D. Tavor and V. Gitis, Chem. Eng. Technol., 39, 1537(2016).
14. X. Xu, X. L. Ge, Y. D. Qian, B. H. Zhang, H. L. Wang and Q. Yang,Chem. Eng. Res. Des., 138, 13 (2018).
15. D. I. Mawarni, W. E. Juwana, K. A. Yuana, W. Budhijanto, Deendarlianto and Indarto, J. Water Process Eng., 48, 102846 (2022).
16. Y. L. Chang, L. Xu, J. P. Li, X. Jiang, Y. Huang, W. J. Lv and H. L.Wang, Ind. Eng. Chem. Res., 60, 1423 (2021).
17. M. Colic, W. Morse and J. D. Miller, Int. J. Environ. Pollut., 30, 296(2007).
18. A. R. Al-Obaidi, Exp. Tech., 44, 329 (2020).
19. A. R. Al-Obaidi and R. Mishra, Arabian J. Sci. Eng., 45, 5657 (2020).
20. A. R. Al-Obaidi, Heliyon, 5, e01910 (2019).
21. A. R. Al-Obaidi and H. Towsyfyan, J. Appl. Fluid Mech., 12, 2057(2019).
22. A. R. Al-Obaidi, Arch. Acoust., 45, 541 (2020).
23. A. R. Al-Obaidi, Int. J. Fluid Mech. Res., 47, 501 (2020).
24. A. R. Al-Obaidi, Arch. Acoust., 44, 59 (2019).
25. X. H. Li, W. B. Su, Y. Liu, X. K. Yan, L. J. Wang and H. J. Zhang,Asia-Pac. J. Chem. Eng., 16, e2611 (2020).
26. S. L. Yan, Y. Zhang, C. Peng, X. Y. Yang, Y. Huang, Z. S. Bai and X.Xu, Chin. J. Chem. Eng., 45, 229 (2022).
27. S. L. Yan, Y. Zhang, X. Y. Yang, Y. Huang, Z. S. Bai and X. Xu, Ind.Eng. Chem. Res., 60, 6006 (2021).
28. X. K. Yan, Y. P. Yao, S. Q. Meng, S. Y. Zhao, L. J. Wang, H. J. Zhang and Y. J. Cao, Chem. Eng. Res. Des., 174, 1 (2021).
29. A. R. Al-Obaidi, Int. J. Nonlinear Sci. Numer. Simul., 20, 487 (2019).
30. A. R. Al-Obaidi, J. Mech. Eng. Sci., 14, 6570 (2020).
31. A. R. Al‐Obaidi, Heat Transfer, 49, 2000 (2020).
32. A. R. Al-Obaidi, J. Appl. Fluid Mech., 12, 445 (2019).
33. A. R. Al-Obaidi, J. Phys. Conf. Ser., 1279, 012069 (2019).
34. A. R. Al-Obaidi, Int. J. Model. Simul. Sci. Comput., 12, 2150045(2021).
35. A. R. Al-Obaidi and A. A. Mohammed, J. Eng. Sci. Technol. Rev.,12, 70 (2019).
36. A. R. Al-Obaidi, Iran. J. Sci. Technol. Trans. Mech. Eng., 45, 441(2021).
37. X. Y. Wang, Y. Shuai, H. M. Zhang, J. Y. Sun, Y. Yang, Z. L. Huang,B. B. Jiang, Z. W. Liao, J. D. Wang and Y. R. Yang, Chem. Eng. J.,403, 126397 (2021).
38. B. E. Launder and D. B. Spalding, Lectures in mathematical models of turbulence, Academic Press, London, England (1972).
39. V. Yakhot and S. A. Orszag, J. Sci. Comput., 1, 3 (1986).
40. T.-H. Shih, W. W. Liou, A. Shabbir, Z. Yang and J. Zhu, Comput.Fluids, 24, 227 (1995).
41. F. R. Menter, AIAA J., 32, 1598 (1994).
42. B. E. Launder, G. J. Reece and W. Rodi, J. Fluid Mech., 68, 537(1975).
43. M. M. Gibson and B. E. Launder, J. Fluid Mech., 86, 491 (1978).
44. B. E. Launder, Int. J. Heat Fluid Flow, 10, 282 (1989).
45. P. Yan, H. B. Jin, G. X. He, X. Y. Guo, L. Ma, S. H. Yang and R. Y.Zhang, Chem. Eng. Res. Des., 154, 47 (2020).
46. J. X. Ye, Y. X. Xu, X. F. Song and J. G. Yu, Chem. Eng. Res. Des.,144, 135 (2019).
47. J. O. Hinze, AIChE J., 1, 289 (1955)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로