ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 2, 2022
Revised September 9, 2022
Accepted November 6, 2022
Acknowledgements
The author in this existing numerical work wants to thank the Mustansiriyah University (www.uomustansiriyah.edu.iq) in Baghdad - Iraq for its support.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

The influence of different twisted tape inserts configurations on thermo-hydraulic performance and enhancement of heat transfer in the 3D circular tube

Mustansiriyah University, College of Engineering, Mechanical Engineering Department, Baghdad, Iraq
ahmedram@uomustansiriyah.edu.iq
Korean Journal of Chemical Engineering, April 2023, 40(4), 770-790(21), 10.1007/s11814-022-1342-6
downloadDownload PDF

Abstract

Numerical simulation was performed to analyze the behavior of a flow field, characteristic of pressure drop, and hydraulic thermal performance. Moreover, influences of different twisted tape geometric parameters, including three twisted tape inserts (NTTI) 1, 3 and 5. Also, six different twisted turns (NTT) were comparably quantitative and qualitative studied using various important parameters, including static pressure, dynamic pressure, and velocity magnitude, respectively. The results revealed that the value of pressure drop between each cross section in the pipe decreases as pipe length increases. When the NTTIs increases that leads to a pressure difference also increasing as compared to the smooth pipe. It is found that inserting twisted tape in the pipe leads causes considerably high resistance in the flow, then leads to increase the pressure difference. In addition, the results show that existence of the twisted tapes inside the pipe can create more vortex motion (swirl flows) that leads to formation of different radial velocities. Also, the PEF factor decreases as the Re increases. The comparison results for the numerical and experimental indicate that a good agreement of the average deviation for f (friction factor) and Nu is around 6.5% and 7%. The minimum Nu number value was 10 for NTT1 at Re number of 900 and the higher value was 50 at Re of 14,000. The PEF is more than 1.6 for NTT6 configuration. The results indicate that the temperature difference increases up to 38.1%, 46.11% and 50.52% with increasing the NTTI from 1 to 5, respectively, as compared to the temperature difference in a smooth pipe.

References

1. S. Eiamsa-ard, K. Wongcharee and P. Eiamsa-Ard, Appl. Therm.Eng., 30(4), 310 (2010).
2. A. R. Al-Obaidi, J. Energy Storage, 26, 101012 (2019).
3. S. Eiamsa-ard, C. Thianpong, P. Eiamsa-Ard and P. Promvonge,Int. Commun. Heat Mass Transfer, 36(4), 365 (2009).
4. A. R. Al-Obaidi and A. Sharif, J. Therm. Anal. Calorim., 143(5),3533 (2020).
5. W. He, D. Toghraie, A. Lotfipour, F. Pourfattah, A. Karimipour and M. Afrand, Int. Commun. Heat Mass Transfer, 110, 104440 (2020).
6. A. R. Al‐Obaidi, Heat Transfer, 49(8), 4153 (2020).
7. M. Ghalambaz, R. Arasteh, H. Ali, H. M. Talebizadehsardari and W. Yaïci, Symmetry, 12(10), 1652 (2020).
8. F. Pourfattah, M. Sabzpooshani, D. Toghraie and A. Asadi, J. Therm.Anal. Calorim., 144(1), 189 (2021).
9. T. Dagdevir and V. Ozceyhan, Int. J. Therm. Sci., 159, 106564 (2021).
10. S. D. Salman, A. A. H Kadhum, M. S. Takriff and A. Mohamad, In IOP Conference Series: Mater. Sci. Eng., 50, 012034 (2013).
11. D. Erdemir, V. Ozceyhan and N. Altuntop, World Sci. Eng. Acad.Soc., WSEAS, 1, 167 (2013).
12. K. P. V. Krishna varma, P. S. Kishore and T. Tirupathi, SSRG Int. J.of Mechanical Engineering (SSRG-IJME) - Special Issue (2017).
13. N. Mashoofi, S. Pourahmad and S. M. Pesteei, Case Stud. Therm.Eng., 10, 161 (2017).
14. R. Hosseinnejad, M. Hosseini and M. Farhadi, J. Therm. Anal.Calorim., 135(3), 1863 (2019).
15. A. Saravanan and S. Jaisankar, Int. J. Therm. Sci., 140, 59 (2019).
16. S. Alzahrani and S. Usman, Therm. Sci. Eng. Prog., 11, 325 (2019).
17. D. Xi, J. Liu, W. Li, Z. Li, Z. Jin, L Zhong and L. Li, IEEE Trans.Appl. Superconductivity, 29(2), 1 (2019).
18. M. E. Nakhchi and J. A. Esfahani, J. Heat Transfer, 141(4), 041902(2019).
19. Y. Liang, P. Liu, N. Zheng, F. Shan, Z. Liu and W. Liu, Appl. Therm.Eng., 148, 557 (2019).
20. Y. Hong, J. Du and S. Wang, Int. J. Heat Mass Transfer, 115, 551(2017).
21. S. Kumar, P. Dinesha, A. Narayanan and R. Nanda, Heat Transf.—Asian Res., 48(7), 3399 (2019).
22. N. Piriyarungrod, M. Kumar, C. Thianpong, M. Pimsarn, V. Chuwattanakul and S. Eiamsa-Ard, Appl. Therm. Eng., 136, 516 (2018).
23. H. Safikhani and F. Abbasi, Adv. Powder Technol., 26(6), 1609(2015).
24. M. Ghalambaz, H. Arasteh, R. Mashayekhi, A. Keshmiri, P. Talebizadehsardari and W. Yaïci, Nanomaterials, 10(9), 1656 (2020).
25. H. Arasteh, A. Rahbari, R. Mashayekhi, A. Keshmiri, R. B. Mahani and P. Talebizadehsardari, Int. J. Therm. Sci., 170, 106966 (2021).
26. M. Ghalambaz, H. I. Mohammed, J. M. Mahdi, A. H. Eisapour, O.Younis, A. Ghosh and W. Yaïci, Energies, 14(6), 1619 (2021).
27. R. Mashayekhi, H. Arasteh, P. Talebizadehsardari, A. Kumar, M.Hangi and A. Rahbari, Heat Transf. Eng., 43(7), 608 (2022).
28. R. Mashayekhi, H. Arasteh, P. Talebizadehsardari, A. Kumar, M.Hangi and A. Rahbari, Heat Transf. Eng., 43(7), 608 (2022).
29. M. Ghalambaz, J. M. Mahdi, A. Shafaghat, A. H. Eisapour, O. Younis, P. Talebizadeh Sardari and W. Yaïci, Sustainability, 13(5), 2685(2021).
30. A. R. Miandoab, S. A. Bagherzadeh and A. H. M. Isfahani, Eng. Anal.Boundary Elements, 140, 1 (2022).
31. A. Aghaie and A. A. Rabienataj Darzi, Heat Transf. Asian Res., 48(1),233 (2019).
32. A. T. Wijayanta, B. Kristiawan and M. Aziz, Energies, 12(2), 306(2019).
33. A. W. Albanesi, K. D. Daish B. Dally and R. C. Chin, 2nd Australasian Fluid Mechanics Conference Adelaide, Australia (2018).
34. F. P. Incropera, D. P. DeWitt, T. L. Bergman and A. S. Lavine, Fundamentals of heat and mass transfer, sixth ed., John Wiley & Sons(2006).
35. Y. Hong, J. Du, Q. Li, T. Xu and W. Li, Energy Convers. Manage.,185, 271 (2019).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로