Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 2, 2022
Revised September 9, 2022
Accepted November 6, 2022
- Acknowledgements
- The author in this existing numerical work wants to thank the Mustansiriyah University (www.uomustansiriyah.edu.iq) in Baghdad - Iraq for its support.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
The influence of different twisted tape inserts configurations on thermo-hydraulic performance and enhancement of heat transfer in the 3D circular tube
Abstract
Numerical simulation was performed to analyze the behavior of a flow field, characteristic of pressure drop,
and hydraulic thermal performance. Moreover, influences of different twisted tape geometric parameters, including three
twisted tape inserts (NTTI) 1, 3 and 5. Also, six different twisted turns (NTT) were comparably quantitative and qualitative studied using various important parameters, including static pressure, dynamic pressure, and velocity magnitude,
respectively. The results revealed that the value of pressure drop between each cross section in the pipe decreases as pipe
length increases. When the NTTIs increases that leads to a pressure difference also increasing as compared to the
smooth pipe. It is found that inserting twisted tape in the pipe leads causes considerably high resistance in the flow, then
leads to increase the pressure difference. In addition, the results show that existence of the twisted tapes inside the pipe
can create more vortex motion (swirl flows) that leads to formation of different radial velocities. Also, the PEF factor
decreases as the Re increases. The comparison results for the numerical and experimental indicate that a good agreement of the average deviation for f (friction factor) and Nu is around 6.5% and 7%. The minimum Nu number value
was 10 for NTT1 at Re number of 900 and the higher value was 50 at Re of 14,000. The PEF is more than 1.6 for
NTT6 configuration. The results indicate that the temperature difference increases up to 38.1%, 46.11% and 50.52%
with increasing the NTTI from 1 to 5, respectively, as compared to the temperature difference in a smooth pipe.
Keywords
References
2. A. R. Al-Obaidi, J. Energy Storage, 26, 101012 (2019).
3. S. Eiamsa-ard, C. Thianpong, P. Eiamsa-Ard and P. Promvonge,Int. Commun. Heat Mass Transfer, 36(4), 365 (2009).
4. A. R. Al-Obaidi and A. Sharif, J. Therm. Anal. Calorim., 143(5),3533 (2020).
5. W. He, D. Toghraie, A. Lotfipour, F. Pourfattah, A. Karimipour and M. Afrand, Int. Commun. Heat Mass Transfer, 110, 104440 (2020).
6. A. R. Al‐Obaidi, Heat Transfer, 49(8), 4153 (2020).
7. M. Ghalambaz, R. Arasteh, H. Ali, H. M. Talebizadehsardari and W. Yaïci, Symmetry, 12(10), 1652 (2020).
8. F. Pourfattah, M. Sabzpooshani, D. Toghraie and A. Asadi, J. Therm.Anal. Calorim., 144(1), 189 (2021).
9. T. Dagdevir and V. Ozceyhan, Int. J. Therm. Sci., 159, 106564 (2021).
10. S. D. Salman, A. A. H Kadhum, M. S. Takriff and A. Mohamad, In IOP Conference Series: Mater. Sci. Eng., 50, 012034 (2013).
11. D. Erdemir, V. Ozceyhan and N. Altuntop, World Sci. Eng. Acad.Soc., WSEAS, 1, 167 (2013).
12. K. P. V. Krishna varma, P. S. Kishore and T. Tirupathi, SSRG Int. J.of Mechanical Engineering (SSRG-IJME) - Special Issue (2017).
13. N. Mashoofi, S. Pourahmad and S. M. Pesteei, Case Stud. Therm.Eng., 10, 161 (2017).
14. R. Hosseinnejad, M. Hosseini and M. Farhadi, J. Therm. Anal.Calorim., 135(3), 1863 (2019).
15. A. Saravanan and S. Jaisankar, Int. J. Therm. Sci., 140, 59 (2019).
16. S. Alzahrani and S. Usman, Therm. Sci. Eng. Prog., 11, 325 (2019).
17. D. Xi, J. Liu, W. Li, Z. Li, Z. Jin, L Zhong and L. Li, IEEE Trans.Appl. Superconductivity, 29(2), 1 (2019).
18. M. E. Nakhchi and J. A. Esfahani, J. Heat Transfer, 141(4), 041902(2019).
19. Y. Liang, P. Liu, N. Zheng, F. Shan, Z. Liu and W. Liu, Appl. Therm.Eng., 148, 557 (2019).
20. Y. Hong, J. Du and S. Wang, Int. J. Heat Mass Transfer, 115, 551(2017).
21. S. Kumar, P. Dinesha, A. Narayanan and R. Nanda, Heat Transf.—Asian Res., 48(7), 3399 (2019).
22. N. Piriyarungrod, M. Kumar, C. Thianpong, M. Pimsarn, V. Chuwattanakul and S. Eiamsa-Ard, Appl. Therm. Eng., 136, 516 (2018).
23. H. Safikhani and F. Abbasi, Adv. Powder Technol., 26(6), 1609(2015).
24. M. Ghalambaz, H. Arasteh, R. Mashayekhi, A. Keshmiri, P. Talebizadehsardari and W. Yaïci, Nanomaterials, 10(9), 1656 (2020).
25. H. Arasteh, A. Rahbari, R. Mashayekhi, A. Keshmiri, R. B. Mahani and P. Talebizadehsardari, Int. J. Therm. Sci., 170, 106966 (2021).
26. M. Ghalambaz, H. I. Mohammed, J. M. Mahdi, A. H. Eisapour, O.Younis, A. Ghosh and W. Yaïci, Energies, 14(6), 1619 (2021).
27. R. Mashayekhi, H. Arasteh, P. Talebizadehsardari, A. Kumar, M.Hangi and A. Rahbari, Heat Transf. Eng., 43(7), 608 (2022).
28. R. Mashayekhi, H. Arasteh, P. Talebizadehsardari, A. Kumar, M.Hangi and A. Rahbari, Heat Transf. Eng., 43(7), 608 (2022).
29. M. Ghalambaz, J. M. Mahdi, A. Shafaghat, A. H. Eisapour, O. Younis, P. Talebizadeh Sardari and W. Yaïci, Sustainability, 13(5), 2685(2021).
30. A. R. Miandoab, S. A. Bagherzadeh and A. H. M. Isfahani, Eng. Anal.Boundary Elements, 140, 1 (2022).
31. A. Aghaie and A. A. Rabienataj Darzi, Heat Transf. Asian Res., 48(1),233 (2019).
32. A. T. Wijayanta, B. Kristiawan and M. Aziz, Energies, 12(2), 306(2019).
33. A. W. Albanesi, K. D. Daish B. Dally and R. C. Chin, 2nd Australasian Fluid Mechanics Conference Adelaide, Australia (2018).
34. F. P. Incropera, D. P. DeWitt, T. L. Bergman and A. S. Lavine, Fundamentals of heat and mass transfer, sixth ed., John Wiley & Sons(2006).
35. Y. Hong, J. Du, Q. Li, T. Xu and W. Li, Energy Convers. Manage.,185, 271 (2019).