Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 27, 2022
Revised September 19, 2022
Accepted October 12, 2022
- Acknowledgements
- This work was supported by Priority Research Centers Program funded by the Ministry of Education (2014R1A6A1031189), a grant (22PCHG-C161574-02) from Development of Demonstration-scale Hydrogen Production Technology using Petroleum coke Program funded by Ministry of Land, Infrastructure and Transport of Korea government, and 2021 Yeungnam University Research Grant. This work was also supported by the Basic Science Research Program (2020R1I1A3051997) through the National Research Foundation of Korea (NRF) fu
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Enhanced desulfurization performance of copper aerogel-based absorbents
Abstract
Copper aerogel was employed as a sulfur absorbent to enhance desulfurization performance. The copper
aerogel was synthesized using an ethanolic approach and dried by three different drying techniques of freeze drying,
organic solvent sublimation drying with tert-butanol, and acetonitrile. The typical interconnecting and porous structure of the aerogel was clearly observed only for the aerogel sample made by freeze-drying. Further desulfurization tests
showed that freeze-dried copper aerogel had the highest sulfur capacity (12 mgS/g-sorbent) at a low temperature of
200 o
C. This enhancement was driven by two factors. 1) The interconnecting structure of copper aerogel weakens the
gas diffusion resistance, which can prevent the gas from flowing the inside of sample thereby reducing the efficiency of
absorbent. 2) The partially oxidized structure of Cu2O is thermodynamically active toward the desulfurization reaction, which was confirmed by density functional theory calculations. Overall, using copper aerogels with an interconnecting structure and Cu2O composition would be a novel approach to enhance desulfurization performance.
References
2. P. P. Edwards, V. L. Kuznetsov and W. I. F. David, Philos. Trans. R.Soc. A Math. Phys. Eng. Sci., 365, 1043 (2007).
3. M. Noussan, P. P. Raimondi, R. Scita and M. Hafner, Sustainability, 13, 298 (2021).
4. I. Dincer, Int. J. Hydrogen Energy, 37, 1954 (2012).
5. S. Atilhan, S. Park, M. M. El-Halwagi, M. Atilhan, M. Moore and R. B. Nielsen, Curr. Opin. Chem. Eng., 31, 100668 (2021).
6. Z. Navas-Anguita, D. García-Gusano, J. Dufour and D. Iribarren,Sci. Total Environ., 771, 145432 (2021).
7. M. H. Ali Khan, R. Daiyan, P. Neal, N. Haque, I. MacGill and R.Amal, Int. J. Hydrogen Energy, 46, 22685 (2021).
8. M. Yu, K. Wang and H. Vredenburg, Int. J. Hydrogen Energy, 46,21261 (2021).
9. R. W. Howarth and M. Z. Jacobson, Energy Sci. Eng., 9, 1676 (2021).
10. B. N. Murthy, A. N. Sawarkar, N. A. Deshmukh, T. Mathew and J. B. Joshi, Can. J. Chem. Eng., 92, 441 (2014).
11. V. Nemanova, A. Abedini, T. Liliedahl and K. Engvall, Fuel, 117, 870(2014).
12. J. Wei, Q. Guo, Y. Gong, L. Ding and G. Yu, Renew. Energy, 155,111 (2020).
13. N. Nipattummakul, I. I. Ahmed, S. Kerdsuwan and A. K. Gupta,Int. J. Hydrogen Energy, 35, 11738 (2010).
14. D. Kim, D. Bae, Y. J. Kim, S. J. Lee, J. W. Lee, Y. Yun, N.K. Park and M. Kim, Appl. Sci., 11, 7775 (2021).
15. I. V. Babich and J. A. Moulijn, Fuel, 82, 607 (2003).
16. B. Saha, S. Vedachalam and A. K. Dalai, Fuel Process. Technol., 214,106685 (2021).
17. H. Kuwahara, Chem. Econ. Engng Rev., 5, 35 (1973).
18. H. Bin Fang, J. T. Zhao, Y. T. Fang, J. J. Huang and Y. Wang, Fuel,108, 143 (2013).
19. D. Jiang, L. Su, L. Ma, N. Yao, X. Xu, H. Tang and X. Li, Appl. Surf.Sci., 256, 3216 (2010).
20. K. M. Dooley, V. Kalakota and S. Adusumilli, Energy Fuels, 25, 1213(2011).
21. R. Menzel, D. Iruretagoyena, Y. Wang, S. M. Bawaked, M. Mokhtar,S. A. Al-Thabaiti, S. N. Basahel and M. S. P. Shaffer, Fuel, 181, 531(2016).
22. J. Wang, L. Wang, H. Fan, H. Wang, Y. Hu and Z. Wang, Fuel, 209,329 (2017).
23. J. Abbasian and R. B. Slimane, Ind. Eng. Chem. Res., 37, 2775 (1998).
24. M. H. Morcali, B. Zeytuncu, A. Baysal, S. Akman and O. Yucel, J.Environ. Chem. Eng., 2, 1655 (2014).
25. Y. Wang, F. H. Yang and R. T. Yang, Ind. Eng. Chem. Res., 45, 7649(2006).
26. W. H. Tian, L. B. Sun, X. L. Song, X. Q. Liu, Y. Yin and G. S. He,Langmuir, 26, 17398 (2010).
27. S. Liu, B. Zhang, Z. Bai, F. Chen, F. Xie, J. Zhou, Y. Lu, G. Miao, J.Jin and Z. Zhang, Energy Fuels, 32, 13004 (2018).
28. T. Feng, Y. Wang, Y. N. Wu, D. M. Kabtamu, K. László and F. Li, J.Mater. Chem. A., 8, 8678 (2020).
29. I. Nitta, O. Himanen and M. Mikkola, Electrochem. Commun., 10,47 (2008).
30. J. Shen, J. Zhou, N. G. C. Astrath, T. Navessin, Z. S. Liu, C. Lei, J. H.Rohling, D. Bessarabov, S. Knights and S. Ye, J. Power Sources, 196,674 (2011).
31. T. Mashio, A. Ohma, S. Yamamoto and K. Shinohara, ECS Trans.,11, 529 (2007).
32. J. Jiao, J. Cao, Y. Xia and L. Zhao, Chem. Eng. J., 306, 9 (2016).
33. Z. Zhao, X. Cui, J. Ma and R. Li, Int. J. Greenh. Gas Control., 1, 355(2007).
34. N. Jia, R. B. Martin, Z. Qi, M. C. Lefebvre and P. G. Pickup, Electrochemica Acta, 46, 2863 (2001).
35. O. Celikbilek, C. A. Thieu, F. Agnese, E. Calì, C. Lenser, N. H. Menzler, J. W. Son, S. J. Skinner and E. Djurado, J. Mater. Chem. A., 7,25102 (2019).
36. N. Fang, J. Guo, S. Shu, H. Luo, Y. Chu and J. Li, Chem. Eng. J., 325,114 (2017).
37. R. Rao, Q. Zhang, H. Liu, H. Yang, Q. Ling, M. Yang, A. Zhang and W. Chen, J. Mol. Catal. A Chem., 363-364, 283 (2012).
38. M. N. Hossain, Z. Liu, J. Wen and A. Chen, Appl. Catal. B Environ., 236, 483 (2018).
39. Y. Jing, L. Wei, Y. Wang and Y. Yu, Micropor. Mesopor. Mater., 183,124 (2014).
40. G. B. Baur, I. Yuranov and L. Kiwi-Minsker, Catal. Today, 249, 252(2015).
41. K. Ganesan, T. Budtova, L. Ratke, P. Gurikov, V. Baudron, I. Preibisch, P. Niemeyer, I. Smirnova and B. Milow, Materials (Basel),11, 1 (2018).
42. I. Smirnova and P. Gurikov, J. Supercrit. Fluids, 134, 228 (2018).
43. A. Du, B. Zhou, Z. Zhang and J. Shen, Materials (Basel), 6, 941(2013).
44. A. Soleimani Dorcheh and M. H. Abbasi, J. Mater. Process. Technol., 199, 10 (2008).
45. S. N. Schiffres, K. H. Kim, L. Hu, A. J. H. McGaughey, M. F. Islam and J. A. Malen, Adv. Funct. Mater., 22, 5251 (2012).
46. M. Glora, M. Wiener, R. Petričević, H. Pröbstle and J. Fricke, J.Non-Cryst. Solids, 285, 283 (2001).
47. J. Biener, M. Stadermann, M. Suss, M. A. Worsley, M. M. Biener,
K. A. Rose and T. F. Baumann, Energy Environ. Sci., 4, 656 (2011).
48. L. Ren, S. Cui, F. Cao and Q. Guo, Angew. Chem. - Int. Ed., 53,10147 (2014).
49. L. Hu, R. He, Z. Lu, K. Zhang and X. Bai, RSC Adv., 9, 9931 (2019).
50. M. Georgi, B. Klemmed, A. Benad and A. Eychmüller, Mater. Chem.Front., 3, 1586 (2019).
51. E. J. Beckman, J. Supercrit. Fluids, 28, 121 (2004).
52. S. Alwin and X. Sahaya Shajan, Mater. Renew. Sustain. Energy, 9, 1(2020).
53. R. A. Vargas-Hernández, J. Phys. Chem. A., 124, 4053 (2020).
54. G. Kresse and J. Furthmüller, Comput. Mater. Sci., 6, 15 (1996).
55. S. Dudarev and G. Botton, Phys. Rev. B - Condens. Matter Mater.Phys., 57, 1505 (1998).
56. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 77, 3865(1996).
57. A. Soon, M. Todorova, B. Delley and C. Stampfl, Phys. Rev. B -Condens. Matter Mater. Phys., 75, 1 (2007).
58. X. Yu, X. Zhang, H. Wang, Z. Wang and G. Feng, J. Phys. Chem. C.,121, 22081 (2017).
59. V. L. Deringer, A. L. Tchougréeff and R. Dronskowski, J. Phys. Chem.A., 115, 5461 (2011).
60. R. Dronskowski, M. Festkbrperforschung and P. E. Blochl, J. Phys.Chem., 97, 8617 (1993).
61. S. Maintz, V. L. Deringer, A. L. Tchougréeff and R. Dronskowski, J.Comput. Chem., 34, 2557 (2013).
62. S. Maintz, V. L. Deringer, A. L. Tchougréeff and R. Dronskowski, J.Comput. Chem., 37, 1030 (2016).
63. X. Li, H. He, S. Cui and L. Ren, ECS J. Solid State Sci. Technol., 5,N1 (2016).
64. L. Ren, X. Li and S. Cui, J. Nanomater., 2016, 1 (2016).
65. X. guang Liu, Q. shuo Mao, Y. Jiang, Y. Li, J. lin Sun and F. xue Huang, Int. J. Miner. Metall. Mater., 28, 317 (2021).
66. J. Gao, W. Wei, M. J. Shi, H. Han, J. Lu and J. Xie, J. Mater. Sci., 51,4481 (2016).
67. Y. Wu, H. Jiang, F. S. Ke and H. Deng, Chem. - An Asian J., 14, 3577(2019).
68. Y. Bi, H. Ren, B. Chen, G. Chen, Y. Mei and L. Zhang, J. Sol-Gel Sci. Technol., 63, 140 (2012).
69. S. He, D. Huang, H. Bi, Z. Li, H. Yang and X. Cheng, J. Non-Cryst.Solids, 410, 58 (2015).
70. A. Freytag, S. Sánchez-Paradinas, S. Naskar, N. Wendt, M. Colombo,G. Pugliese, J. Poppe, C. Demirci, I. Kretschmer, D. W. Bahnemann,
P. Behrens and N.C. Bigall, Angew. Chem. - Int. Ed., 55, 1200 (2016).
71. Y. Pan, S. He, L. Gong, X. Cheng, C. Li, Z. Li, Z. Liu and H. Zhang,Mater. Des., 113, 246 (2017).
72. M. Yin, C. K. Wu, Y. Lou, C. Burda, J. T. Koberstein, Y. Zhu and S.O’Brien, J. Am. Chem. Soc., 127, 9506 (2005).
73. Y. Gao, F. Yang, Q. Yu, R. Fan, M. Yang, S. Rao, Q. Lan, Z. Yang and Z. Yang, Microchim. Acta, 186, 192 (2019).
74. Y. C. Huang, C. H. Chou, C. Y. Liao, W. L. Tsai and H. C. Cheng,Appl. Phys. Lett., 103, 1 (2013).
75. F. Chiter, D. Costa, V. Maurice and P. Marcus, J. Phys. Chem. C,124, 17048 (2020).
76. T. Le, Y. Shao and B. Wang, J. Phys. Chem. C., 125, 6108 (2021).
77. L. I. Bendavid and E. A. Carter, J. Phys. Chem. C., 117, 26048 (2013).
78. Q. Le, Y. Xiang, Z. Liu and Z. Cheng, Colloids Surf. A Physicochem. Eng. Asp., 648, 129369 (2022).
79. J. Kou, C. Lu, W. Sun, L. Zhang and Z. Xu, ACS Sustain. Chem.Eng., 3, 3053 (2015).