Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 21, 2022
Revised October 31, 2022
Accepted December 29, 2022
- Acknowledgements
- The study was supported by the 2021 research fund of the University of Ulsan.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Cyanoethyl-guar gum as an effective polymer binder for lithium titanate electrode of the lithium-ion battery
Abstract
Unlike high-capacity silicon active materials, lithium titanate Li4Ti5O12 (LTO) as an anode material in lithium-ion battery shows almost no volume change during the charge/discharge processes. This fact rather neglects the
importance of binder materials for the LTO electrode. A few research efforts indicate that a polymer binder aiding
rapid ion or electron transfer is suitable for the LTO electrode. In this study, the synergetic effect between branched
guar gum polysaccharide and polar nitrile groups was thoroughly investigated as a promising binder candidate for the
LTO electrode. The cyanoethyl-guar gum binder synthesized by a straightforward cyanoethylation of guar gum with
acrylonitrile leads to lower resistance on lithium-ion transport and electrolyte penetration due to the strongly polar
nitrile groups. Compared to the pristine guar gum binder-based LTO electrode, therefore, the LTO electrode containing the cyanoethyl-guar gum binder exhibits superior rate performance with improved kineti
References
2. H. Yan, D. Zhang, Qilu, X. Duo and X. Sheng, Ceram. Int., 47, 5870(2021).
3. C. Wu, Y. Wang, G. Ma and X. Zheng, Electrochem. Commun., 131,107119 (2021).
4. M. Murase, N. Yabuuchi, Z.-J. Han, J.-Y. Son, Y.-T. Cui, H. Oji and S. Komaba, ChemSusChem., 5, 2307 (2021).
5. N.-S. Choi, S.-Y. Ha, Y. Lee, J. Y. Jang, M.-H. Jeong, W. C. Shin and M. Ue, J. Electrochem. Sci. Technol., 6, 35 (2015).
6. P.-F. Cao, G. Yang, B. Li, Y. Zhang, S. Zhao, S. Zhang, A. Erwin, Z.Zhang, A. P. Sokolov, J. Nanda and T. Saito, ACS Energy Lett., 4,1171 (2019).
7. A. Miranda, K. Sarang, B. Gendensuren, E.-S. Oh, J. Lutkenhaus and R. Verduzco, Mol. Syst. Des. Eng., 5, 709 (2020).
8. J. Li, R. B. Lewis and J. R. Dahn, Electrochem. Solid-State Lett., 10,A17 (2007).
9. A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy,C.F. Huebner, T.F. Fuller, I. Luzinov and G. Yushin, ACS Appl. Mater. Interfaces, 2, 3004 (2010).
10. H.-K. Park, B.-S. Kong and E.-S. Oh, Electrochem. Commun., 13,1051 (2011).
11. I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev,R. Burtovyy, I. Luzinov and G. Yushin, Science, 334, 75 (2011).
12. S.-L. Chou, J.-Z. Wang, H.-K. Liu and S.-X. Dou, J. Phys. Chem. C,115, 16220 (2011).
13. G. T. Kim, S. S. Jeong, M. Joost, E. Rocca, M. Winter, S. Passerini and A. Balducci, J. Power Sources, 196, 2187 (2011).
14. M. Mancini, F. Nobili, R. Tossici, M. Wohlfahrt-Mehrens and R.Marassi, J. Power Sources, 196, 9665 (2011).
15. S.-J. Kim, B.-R. Lee and E.-S. Oh, J. Power Sources, 273, 608 (2015).
16. B.-R. Lee, S.-j. Kim and E.-S. Oh, J. Electrochem. Soc., 161, A2128(2014).
17. S.-W. Han, S.-J. Kim and E.-S. Oh, J. Electrochem. Soc., 161, A587(2014).
18. C. He, B. Gendensuren, H. Kim, H. Lee and E.-S. Oh, J. Electroanal. Chem., 876, 114532 (2020).
19. S. Lee, E.-Y. Kim, H. Lee and E.-S. Oh, J. Power Sources, 269, 418(2014).
20. L. Gong, M. H. T. Nguyen and E.-S. Oh, Electrochem. Commun.,29, 45 (2013).
21. M.H.T. Nguyen and E.-S. Oh, Electrochem. Commun., 35, 45 (2013).
22. A. Ragheb, I. A. Ei-Thalouth, M. A. Amer, S. H. Nassar and M.Kamel, Starch - Stärke, 45, 244 (1993).
23. B. R. Sharma, V. Kumar and P. L. Soni, Starch - Stärke, 55, 38 (2003).
24. G. Rajput, I. P. Pandey, G. Joshi and S. S. Bisht, J. Indian Acad. Wood Sci., 12, 1 (2015).
25. D. N. Iqbal, A. Nazir, M. Iqbal and M. Yameen, Green Process.Synth., 9, 212 (2020).
26. J. He, J. Wang, H. Zhong, J. Ding and L. Zhang, Electrochim. Acta,182, 900 (2015).
27. V. Singh, A. Tiwari, D. N. Tripathi and R. Sanghi, J. Appl. Polym.Sci., 92, 1569 (2004).
28. V. Singh, A. Tiwari, S. Pandey, S. K. Singh and R. Sanghi, J. Appl.Polym. Sci., 104, 536 (2007).
29. L. Zhang, J.-D. Zhang and B.-J. Xu, Results Phys., 19, 103583 (2020).
30. Y. Wang, Y. Zhang, W.-J. Yang, S. Jiang, X. Hou, R. Guo, W. Liu, P.Huang, J. Lu, H. Gu and J. Xie, J. Electrochem. Soc., 166, A5014 (2018).
31. L. Mo and H. Zheng, Energy Rep., 6, 2913 (2020).
32. Y.-H. Jin, K.-M. Min, H.-W. Shim, S.-D. Seo, I.-S. Hwang, K.-S.Park and D.-W. Kim, Nanoscale Res. Lett., 7, 10 (2012).
33. M. Ratynski, B. Hamankiewiecz, M. Krajewski, M. Boczar, D. A.Buchberger and A. Czerwinski, Electrocatalysis, 11, 160 (2020).
34. T. R. Jow, S. A. Delp, J. L. Allen, J.-P. Jones and M. C. Smart, J. Electrochem. Soc., 165, A361 (2018).
35. Z. Ogumi, Electrochemistry, 78, 319 (2010).
36. M. Opitz, J. Yue, J. Wallauer, B. Smarsly and B. Roling, Electrochim.Acta, 168, 125 (2015).
37. B. Gendensuren and E.-S. Oh, J. Power Sources, 384, 379 (2018).
38. T. Kim, W. Choi, H.-C. Shin, J.-Y. Choi, J. M. Kim, M.-S. Park and W.-S. Yoon, J. Electrochem. Sci. Technol., 11, 14 (2020).
39. F. Croce, S. D. Brown, S. G. Greenbaum, S. M. Slane and M. Salomon, Chem. Mater., 5(9), 1268 (1993).
40. Y.-S. Kim, Y.-G. Cho, D. Odkhuu, N. Park and H.-K. Song, Sci.Rep., 3, 1917 (2013).
41. D. Zhou, Y.-B. He, R. Liu, M. Liu, H. Du, B. Li, Q. Cai, Q.-H. Yang and F. Kang, Adv. Energy Mater., 5, 1500353 (2015).
42. S. Karuppiah, S. Franger and K. Nallathamby, ChemElectroChem.,5, 343 (2018).
43. M. Yoo, C. W. Frank and S. Mori, Chem. Mater., 15, 850 (2003).