Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 27, 2022
Revised September 9, 2022
Accepted September 25, 2022
- Acknowledgements
- Suresh Kanuri: Conceptualization, Investigation, Data generation, Writing-original draft; Jha Deeptank Vinodkumar: Data generation; Sounak Roy: Administration, Data validation; Chanchal Chakraborty: Administration, Data validation; Santanu Prasad Dutta: Data validation; Satyapaul A. Singh: Conceptualization, Result validation, Supervision. Methodology; Srikanta Dinda: Conceptualization, Supervision, Writing and editing. All authors read and approved the final manuscript.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Methanol synthesis from CO2 via hydrogenation route: Thermodynamics and process development with techno-economic feasibility analysis
Abstract
The present study investigated the thermodynamic and economic feasibility of methanol synthesis reactions from CO2 and H2. Three reactions, namely CO2 hydrogenation to methanol, reverse-water-gas-shift (RWGS) and
methanol decomposition reaction, were considered. The effect of temperature, pressure and H2/CO2 mole ratio on CO2
conversion and methanol selectivity was examined explicitly. The simulation results were compared with experimental
data. A conceptual process design for methanol synthesis from CO2 was developed using an Aspen Plus process simulator. At 250 o
C and 50 bar, the analysis shows about 73% CO2 conversion and 99.7% CH3OH selectivity for a recycling
ratio of 0.9. A techno-economic feasibility study was performed to understand the influence of feed and product cost,
recycling ratio and plant throughput, on plant profit margins. The study revealed that the proposed process might be
economically viable if the H2 price is lower than 1,500 $/ton and/or with a methanol production capacity of more than
250 tons/day
Keywords
References
2. P. S. Murthy, W. Liang, Y. Jiang and J. Huang, Energy Fuels, 35, 8558(2021).
3. Z. Han, C. Tang, J. Wang, L. Li and C. Li, J. Catal., 394, 236 (2021).
4. J. Zhang, Z. Li, Z. Zhang, R. Liu, B. Chu and B. Yan, ACS Sustain.Chem. Eng., 8, 18062 (2020).
5. P. Murge, S. Dinda and S. Roy, Energy Fuels, 32, 10786 (2018).
6. F. Sha, Z. Han, S. Tang, J. Wang and C. Li, ChemSusChem, 13, 6160(2020).
7. G. Leonzio, E. Zondervan and P. U. Foscolo, Int. J. Hydrogen Energy,44, 7915 (2019).
8. J. Qaderi, Int. J. Innov. Res. Sci. Stud., 3, 33 (2020).
9. M.-S. Salehi, M. Askarishahi, F. Gallucci and H. R. Godini, Chem.Eng. Process. - Process Intensif., 160, 108264 (2021).
10. Z. Cai, J. Dai, W. Li, K. B. Tan, Z. Huang, G. Zhan, J. Huang and Q. Li, ACS Catal., 10, 13275 (2020).
11. J. Zhong, X. Yang, Z. Wu, B. Liang, Y. Huang and T. Zhang, Chem.Soc. Rev., 49, 1385 (2020).
12. T. Witoon, T. Permsirivanich, W. Donphai, A. Jaree and M. Chareonpanich, Fuel Process Technol., 116, 72 (2013).
13. A. S. Malik, S. F. Zaman, A. A. Al-Zahrani, M. A. Daous, H. Driss and L. A. Petrov, Appl. Catal. A Gen., 560, 42 (2018).
14. N. Rui, F. Zhang, K. Sun, Z. Liu, W. Xu, E. Stavitski, S. D. Senanayake, J. A. Rodriguez and C. J. Liu, ACS Catal., 10, 11307 (2020).
15. S. Kanuri, S. Roy, C. Chakraborty, S. P. Datta, S. A. Singh and S.Dinda, Int. J. Energy Res., 46, 5503 (2022).
16. R. Gaikwad, A. Bansode and A. Urakawa, J. Catal., 343, 127 (2016).
17. T. Zou, T. P. Araújo, F. Krumeich, C. Mondelli and J. Pérez-Ramírez,ACS Sustain. Chem. Eng., 10, 81 (2022).
18. G Leonzio, Processes, 5, 62 (2017).
19. C. Zhang, K. W. Jun, R. Gao, G. Kwak and H. G. Park, Fuel, 190,303 (2017).
20. P. Rosha, S. Kumar and H. Ibrahim, Sustain. Energy Fuels, 5, 4336(2021).
21. F. N. Al-Rowaili, S. S. Khalafalla, D. S. Al-Yami, A. Jamal, U. Ahmed,U. Zahid and E. M. Al-Mutairi, Chem. Eng. Res. Des., 177, 365(2022).
22. P. Borisut and A. Nuchitprasittichai, Front. Energy Res., 7, 1 (2019).
23. K. Atsonios, K. D. Panopoulos and E. Kakaras, Int. J. Hydrogen Energy, 41, 2202 (2016).
24. D. Bellotti, M. Rivarolo, L. Magistri and A. F. Massardo, J. CO2 Util.,21, 132 (2017).
25. J. Nyári, M. Magdeldin, M. Larmi, M. Järvinen and A. SantasaloAarnio, J. CO2 Util., 39, 101166 (2020).
26. M. Son, M. J. Park, G. Kwak, H. G. Park and K. W. Jun, Korean J.Chem. Eng., 35, 355 (2018).
27. J. H. Jeong, S. Kim, M. J. Park and W. B. Lee, Korean J. Chem. Eng.,39, 1709 (2022).
28. J. H. Jeong, Y. Kim, S. Y. Oh, M. J. Park and W. B. Lee, Korean J.Chem. Eng., 39, 1989 (2022).
29. M. Rafati, L. Wang, D. C. Dayton, K. Schimmel, V. Kabadi and A.Shahbazi, Energy Convers. Manag., 133, 153 (2017).
30. R. Gao, C. Zhang, G. Kwak, Y. J. Lee, S. C. Kang and G. Guan,Energy Convers. Manag., 213, 112819 (2020).
31. A. I. Osman, N. Mehta, A. M. Elgarahy, M. Hefny, A. A. Hinai,A. H. A. Muhtaseb and D. W. Rooney, Environ. Chem. Lett., 20,153 (2022).
32. Y. G. Noh, Y. J. Lee, J. Kim, Y. K. Kim, J. S. Ha, S. S. Kalanur and H.Seo, Chem. Eng. J., 428, 131095 (2021).
33. N. Pirrone, F. Bella and S. Hernandez, Green Chem., 24, 5379 (2022).
34. B. Brigljević, M. Byun and H. Lim, Appl. Energy, 274, 115314 (2020).
35. C. V. Miguel, M. A. Soria, A. Mendes and L. M. Madeira, J. Nat.Gas Sci. Eng., 22, 1 (2015).
36. K. Ahmad and S. Upadhyayula, Environ. Prog. Sustain. Energy, 38,98 (2019).
37. K. Stangeland, H. Li and Z. Yu, Ind. Eng. Chem. Res., 57, 4081 (2018).
38. I. U. Din, M. S. Shaharun, M. A. Alotaibi, A. I. Alharthi and A.Naeem, J. CO2 Util., 34, 20 (2019).
39. J. Zhong, X. Yang, Z. Wu, B. Liang, Y. Huang and T. Zhang, Chem.Soc. Rev., 49, 1385 (2020).
40. X. L. Liang, X. Dong, G. D. Lin and H. Bin Zhang, Appl. Catal. B Environ., 88, 315 (2009).
41. Y. Liu, Y. Zhang, T. Wang and N. Tsubaki, Chem. Lett., 36, 1182(2007).
42. X. Chang, X. Han, Y. Pan, Z. Hao, J. Chen, M. Li, J. Lv and X. Ma,Ind. Eng. Chem. Res., 61, 6872 (2022).
43. Z. Ding, Y. Xu, Q. Yang and R. Hou, Int. J. Hydrogen Energy, 47,2475 (2022).
44. Z. Lu, K. Sun, J. Wang and Z. Zhang, Catalysts, 10, 1360 (2020).
45. B. Lee, H. S. Cho, H. Kim, D. Lim, W. Cho, C. H. Kim and H. Lim,J. Environ. Chem. Eng., 9, 106349 (2021).
46. Max S. Peters, Klaus D. Timmerhaus, 5th ed. McGraw-Hill Education (2002).
47. IEA, https://www.iea.org/data-and-statistics/charts/global-averagelevelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050.
48. S. Sadeghi, S. Ghandehariun and M. A. Rosen, Energy, 208, 118347(2020).