ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 27, 2022
Revised September 9, 2022
Accepted September 25, 2022
Acknowledgements
Suresh Kanuri: Conceptualization, Investigation, Data generation, Writing-original draft; Jha Deeptank Vinodkumar: Data generation; Sounak Roy: Administration, Data validation; Chanchal Chakraborty: Administration, Data validation; Santanu Prasad Dutta: Data validation; Satyapaul A. Singh: Conceptualization, Result validation, Supervision. Methodology; Srikanta Dinda: Conceptualization, Supervision, Writing and editing. All authors read and approved the final manuscript.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Methanol synthesis from CO2 via hydrogenation route: Thermodynamics and process development with techno-economic feasibility analysis

1Department of Chemical Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana-500078, India 2Department of Mechanical Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana-500078, India 3Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana-500078, India
srikantadinda@gmail.com
Korean Journal of Chemical Engineering, April 2023, 40(4), 810-823(14), 10.1007/s11814-022-1302-1
downloadDownload PDF

Abstract

The present study investigated the thermodynamic and economic feasibility of methanol synthesis reactions from CO2 and H2. Three reactions, namely CO2 hydrogenation to methanol, reverse-water-gas-shift (RWGS) and methanol decomposition reaction, were considered. The effect of temperature, pressure and H2/CO2 mole ratio on CO2 conversion and methanol selectivity was examined explicitly. The simulation results were compared with experimental data. A conceptual process design for methanol synthesis from CO2 was developed using an Aspen Plus process simulator. At 250 o C and 50 bar, the analysis shows about 73% CO2 conversion and 99.7% CH3OH selectivity for a recycling ratio of 0.9. A techno-economic feasibility study was performed to understand the influence of feed and product cost, recycling ratio and plant throughput, on plant profit margins. The study revealed that the proposed process might be economically viable if the H2 price is lower than 1,500 $/ton and/or with a methanol production capacity of more than 250 tons/day

References

1. NESRL ESRL, Available at: https://gml.noaa.gov/ccgg/trends/gl_trend.html.
2. P. S. Murthy, W. Liang, Y. Jiang and J. Huang, Energy Fuels, 35, 8558(2021).
3. Z. Han, C. Tang, J. Wang, L. Li and C. Li, J. Catal., 394, 236 (2021).
4. J. Zhang, Z. Li, Z. Zhang, R. Liu, B. Chu and B. Yan, ACS Sustain.Chem. Eng., 8, 18062 (2020).
5. P. Murge, S. Dinda and S. Roy, Energy Fuels, 32, 10786 (2018).
6. F. Sha, Z. Han, S. Tang, J. Wang and C. Li, ChemSusChem, 13, 6160(2020).
7. G. Leonzio, E. Zondervan and P. U. Foscolo, Int. J. Hydrogen Energy,44, 7915 (2019).
8. J. Qaderi, Int. J. Innov. Res. Sci. Stud., 3, 33 (2020).
9. M.-S. Salehi, M. Askarishahi, F. Gallucci and H. R. Godini, Chem.Eng. Process. - Process Intensif., 160, 108264 (2021).
10. Z. Cai, J. Dai, W. Li, K. B. Tan, Z. Huang, G. Zhan, J. Huang and Q. Li, ACS Catal., 10, 13275 (2020).
11. J. Zhong, X. Yang, Z. Wu, B. Liang, Y. Huang and T. Zhang, Chem.Soc. Rev., 49, 1385 (2020).
12. T. Witoon, T. Permsirivanich, W. Donphai, A. Jaree and M. Chareonpanich, Fuel Process Technol., 116, 72 (2013).
13. A. S. Malik, S. F. Zaman, A. A. Al-Zahrani, M. A. Daous, H. Driss and L. A. Petrov, Appl. Catal. A Gen., 560, 42 (2018).
14. N. Rui, F. Zhang, K. Sun, Z. Liu, W. Xu, E. Stavitski, S. D. Senanayake, J. A. Rodriguez and C. J. Liu, ACS Catal., 10, 11307 (2020).
15. S. Kanuri, S. Roy, C. Chakraborty, S. P. Datta, S. A. Singh and S.Dinda, Int. J. Energy Res., 46, 5503 (2022).
16. R. Gaikwad, A. Bansode and A. Urakawa, J. Catal., 343, 127 (2016).
17. T. Zou, T. P. Araújo, F. Krumeich, C. Mondelli and J. Pérez-Ramírez,ACS Sustain. Chem. Eng., 10, 81 (2022).
18. G Leonzio, Processes, 5, 62 (2017).
19. C. Zhang, K. W. Jun, R. Gao, G. Kwak and H. G. Park, Fuel, 190,303 (2017).
20. P. Rosha, S. Kumar and H. Ibrahim, Sustain. Energy Fuels, 5, 4336(2021).
21. F. N. Al-Rowaili, S. S. Khalafalla, D. S. Al-Yami, A. Jamal, U. Ahmed,U. Zahid and E. M. Al-Mutairi, Chem. Eng. Res. Des., 177, 365(2022).
22. P. Borisut and A. Nuchitprasittichai, Front. Energy Res., 7, 1 (2019).
23. K. Atsonios, K. D. Panopoulos and E. Kakaras, Int. J. Hydrogen Energy, 41, 2202 (2016).
24. D. Bellotti, M. Rivarolo, L. Magistri and A. F. Massardo, J. CO2 Util.,21, 132 (2017).
25. J. Nyári, M. Magdeldin, M. Larmi, M. Järvinen and A. SantasaloAarnio, J. CO2 Util., 39, 101166 (2020).
26. M. Son, M. J. Park, G. Kwak, H. G. Park and K. W. Jun, Korean J.Chem. Eng., 35, 355 (2018).
27. J. H. Jeong, S. Kim, M. J. Park and W. B. Lee, Korean J. Chem. Eng.,39, 1709 (2022).
28. J. H. Jeong, Y. Kim, S. Y. Oh, M. J. Park and W. B. Lee, Korean J.Chem. Eng., 39, 1989 (2022).
29. M. Rafati, L. Wang, D. C. Dayton, K. Schimmel, V. Kabadi and A.Shahbazi, Energy Convers. Manag., 133, 153 (2017).
30. R. Gao, C. Zhang, G. Kwak, Y. J. Lee, S. C. Kang and G. Guan,Energy Convers. Manag., 213, 112819 (2020).
31. A. I. Osman, N. Mehta, A. M. Elgarahy, M. Hefny, A. A. Hinai,A. H. A. Muhtaseb and D. W. Rooney, Environ. Chem. Lett., 20,153 (2022).
32. Y. G. Noh, Y. J. Lee, J. Kim, Y. K. Kim, J. S. Ha, S. S. Kalanur and H.Seo, Chem. Eng. J., 428, 131095 (2021).
33. N. Pirrone, F. Bella and S. Hernandez, Green Chem., 24, 5379 (2022).
34. B. Brigljević, M. Byun and H. Lim, Appl. Energy, 274, 115314 (2020).
35. C. V. Miguel, M. A. Soria, A. Mendes and L. M. Madeira, J. Nat.Gas Sci. Eng., 22, 1 (2015).
36. K. Ahmad and S. Upadhyayula, Environ. Prog. Sustain. Energy, 38,98 (2019).
37. K. Stangeland, H. Li and Z. Yu, Ind. Eng. Chem. Res., 57, 4081 (2018).
38. I. U. Din, M. S. Shaharun, M. A. Alotaibi, A. I. Alharthi and A.Naeem, J. CO2 Util., 34, 20 (2019).
39. J. Zhong, X. Yang, Z. Wu, B. Liang, Y. Huang and T. Zhang, Chem.Soc. Rev., 49, 1385 (2020).
40. X. L. Liang, X. Dong, G. D. Lin and H. Bin Zhang, Appl. Catal. B Environ., 88, 315 (2009).
41. Y. Liu, Y. Zhang, T. Wang and N. Tsubaki, Chem. Lett., 36, 1182(2007).
42. X. Chang, X. Han, Y. Pan, Z. Hao, J. Chen, M. Li, J. Lv and X. Ma,Ind. Eng. Chem. Res., 61, 6872 (2022).
43. Z. Ding, Y. Xu, Q. Yang and R. Hou, Int. J. Hydrogen Energy, 47,2475 (2022).
44. Z. Lu, K. Sun, J. Wang and Z. Zhang, Catalysts, 10, 1360 (2020).
45. B. Lee, H. S. Cho, H. Kim, D. Lim, W. Cho, C. H. Kim and H. Lim,J. Environ. Chem. Eng., 9, 106349 (2021).
46. Max S. Peters, Klaus D. Timmerhaus, 5th ed. McGraw-Hill Education (2002).
47. IEA, https://www.iea.org/data-and-statistics/charts/global-averagelevelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050.
48. S. Sadeghi, S. Ghandehariun and M. A. Rosen, Energy, 208, 118347(2020).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로