ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 15, 2022
Revised April 29, 2022
Accepted May 23, 2022
Acknowledgements
Bienvenu Gael Fouda Mbanga for conceptualization, data procuration, Eswaran Prabakaran for visualization, Kriveshini Pillay for guidance and supervision have equally contributed.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Carbon nanosheets coated on zirconium oxide nanoplate nanocomposite for Zn2+ ion adsorption and reuse of spent adsorbent for fingerprint detection

Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa
kriveshinip@uj.ac.za
Korean Journal of Chemical Engineering, April 2023, 40(4), 824-840(17), 10.1007/s11814-022-1187-z
downloadDownload PDF

Abstract

This work highlights a novel method for the synthesis of carbon nanosheets coated on zirconium oxide nanoplate (CNS/ZrO2NPs) nanocomposite that is used as an adsorbent for Zn2+ ions removal from water. CNS/ ZrO2NPs nanocomposite was prepared using CNS and ZrO2NPs by a hydrothermal method. This nanocomposite proved to be a good adsorbent for Zn2+ ion uptake at maximum pH of 8 and dosage of 20 mg. The Temkin isotherm model represented the adsorption process followed by the Langmuir isotherm with a maximum adsorption capacity of 606.06 mg g1 , above other adsorbents that have been reported for the removal of zinc ions. The adsorption kinetic process was best described by the pseudo-second-order kinetics, and it was found that the adsorption followed a chemisorption process. The thermodynamic parameters, such as enthalpy (H), Gibbs free energy (G), and entropy (S), revealed that the adsorption was exothermic, spontaneous, and not random during the process. This metalloaded adsorbent Zn2+-CNS/ZrO2NPs nanocomposite furthermore was reused in latent fingerprint detection and did demonstrate good selectivity and sensitivity on different surfaces by two donors. Therefore, Zn2+-CNS/ZrO2NPs nanocomposite may be reutilized as a good fingerprint marking agent in latent fingerprint (LFP) identification to circumvent secondary environmental pollution by the release of a spent adsorbent.

References

1. F. A. Rejula and M. Dhinakaran, Res. J. Recent Sci., 1, 2 (2012).
2. D. Lakherwal, IJERD, 4, 1 (2014).
3. K. Trivunac, Z. Sekulić and S. Stevanović, J. Serb. Chem. Soc., 77,1661 (2012).
4. S. M. Kanawade and R. W. Gaikwad, Int. J. Chem. Eng. Appl., 2,199 (2011).
5. V. Vaishnav, S. Chandra and K. Daga, Int. J. Sci. Eng. Res., 2, 12(2011).
6. H. M. Zwain, M. Vakili and I. Dahlan, Int. J. Chem. Eng., 2014(2014).
7. Z. Tevassolirizi, K. Shams and M. R. Omidkhah, J. Ind. Eng. Chem.,23 (2015).
8. S. Indah, D. Helard and A. Sasmita, Water Sci. Technol., 73, 12(2016).
9. S. Dixit and J. G. Hering, Environ. Sci. Technol., 37, 4182 (2003).
10. A. K. Patra, A. Dutta and A. Bhaumik, J. Hazard. Mater., 201-202,170 (2012).
11. Z. Xu, Q. Li, S. Gao and J. K. Shang, Water Res., 44, 5713 (2010).
12. B. J. Lafferty, M. Ginder-Vogel and D. L. Sparks, Environ. Sci. Technol., 44, 8460 (2010).
13. C. Hang, Q. Li, S. Gao and J. K. Shang, Ind. Eng. Chem. Res., 51, 353(2012).
14. A. R. Contreras, E. Casals, V. Puntes, D. Komilis, A. Sánchez and X. Font, Glob. Nest J., 17, 536 (2015).
15. S. Mahdavi, M. Jalali and A. Afkhami, in Nanotechnol. Sustain.Dev. (2012).
16. R. Taman, O. Me and F. Ha, J. Adv. Chem. Eng., 5, 3 (2015).
17. D. L. Trejo-Arroyo, K. E. Acosta, J. C. Cruz, A. M. Valenzuela-Muñiz,R. E. Vega-Azamar and L. F. Jiménez, Appl. Sci., 9, 1 (2019).
18. C. V. Reddy, B. Babu, I. N. Reddy and J. Shim, Ceram. Int., 44, 6940(2018).
19. M. Negahdary, A. Habibi-Tamijani, A. Asadi and S. Ayati, J. Chem.,2013 (2012).
20. J. Yang, B. Hou, J. Wang, B. Tian, J. Bi, N. Wang, X. Li and X. Huang,Nanomaterials, 9, 424 (2019).
21. M. Ahmad, S. Ahmed and S. Ikram, Int. J. Pharmacogn., 2, 280(2015).
22. S. M. Prabhu and S. Meenakshi, Carbohydr. Polym., 120, 60 (2015).
23. E. Zong, D. Wei, H. Wan, S. Zheng, Z. Xu and D. Zhu, Chem. Eng.J., 221, 193 (2013).
24. T. A. Dontsova, S. V. Nahirniak and I. M. Astrelin, J. Nanomater.,2019 (2019).
25. L. J. Johnston, N. Gonzalez-Rojano, K. J. Wilkinson and B. Xing,NanoImpact, 18, 100219 (2020).
26. B. G. Fouda-Mbanga, E. Prabakaran and K. Pillay, Arab. J. Chem.,13, 6762 (2020).
27. C. Lennard, INTERPOL Forensic Science Symposium (2001).
28. O. P. Jasuja and G. Singh, Forensic Sci. Int., 192, e11 (2009).
29. A. Mukherjee, M. K. Adak, P. Dhak and D. Dhak, J. Environ. Sci.(China), 88, 301 (2020).
30. M. Wang, M. Li, A. Yu, Y. Zhu, M. Yang and C. Mao, Adv. Funct.Mater., 27, 14 (2017).
31. W. S. B. Dwandaru, A. L. Fadli, E. K. Sari and Isnaeni, Dig. J. Nanomater. Biostructures, 15, 555 (2020).
32. M. J. Deka, P. Dutta, S. Sarma, O. K. Medhi, N. C. Talukdar and D.Chowdhury, Heliyon, 5, e01985 (2019).
33. S. Vivekanandhan, M. Venkateswarlu, H. R. Rawls and N. Satyanarayana, Mater. Chem. Phys., 120, 148 (2010).
34. T. N. Rao, I. Hussain, J. E. Lee, A. Kumar and B. H. Koo, Appl. Sci.,9, 17 (2019).
35. L. A. Chunduri, A. Kurdekar, S. Patnaik, B. V. Dev, T. M. Rattan and V. Kamisetti, Mater. Focus., 5, 1 (2016).
36. E. De La Rosa-Cruz, L. A. Díaz-Torres, P. Salas, V. M. Castaño and J. M. Hernández, J. Phys. D. Appl. Phys., 34, 2 (2001).
37. F. H. Alhassan, U. Rashid and Y. H. Taufiq-Yap, J. Oleo Sci., 64, 505(2015).
38. X. Yin, X. Xie, L. Song, Y. Zhou, P. Du and J. Xiong, J. Mater. Sci.,52, 11025 (2017).
39. L. Sygellou, V. Gianneta, N. Xanthopoulos, D. Skarlatos, S. Georga, C. Krontiras, S. Ladas and S. Kennou, Surf. Sci. Spectra, 18, 58(2011).
40. H. Estrade-Szwarckopf, Carbon N. Y., 42, 1713 (2004).
41. H. Zhou, F. Z. Zhou, Y. Q. Shen, B. Liao, J. J. Yu and X. Zhang, Chinese Phys. Lett., 35, 066202 (2018).
42. Y. Liu and X. Jing, Carbon N. Y., 45, 1965 (2007).
43. S. R. Teeparthi, E. W. Awin and R. Kumar, Sci. Rep., 8, 1 (2018).
44. P. Lackner, Z. Zou, S. Mayr, U. Diebold and M. Schmid, Phys. Chem.Chem. Phys., 21, 17613 (2019).
45. S. A. Bhalerao, A. S. Sharma and S. D. Maind, Int. J. Adv. Res. Biol.Sci., 2, 136 (2015).
46. H. Keramati, M. H. Saidi and M. Zabetian, J. Dispers. Sci. Technol.,37, 6 (2016).
47. F.E. Bortot Coelho, V.M. Candelario, E.M.R. Araújo, T.L.S. Miranda and G. Magnacca, Nanomaterials, 10, 779 (2020).
48. S. A. Chaudhry, T. A. Khan and I. Ali, Egypt. J. Basic Appl. Sci., 3, 287(2016).
49. M. Karnib, A. Kabbani, H. Holail and Z. Olama, Energy Procedia.,50 (2014).
50. S. Debnath, A. Maity and K. Pillay, J. Environ. Chem. Eng., 2, 260(2014).
51. R. Asadi, H. Abdollahi, M. Gharabaghi and Z. Boroumand, Adv.Powder Technol., 31, 1480 (2020).
52. M. S. Mansour, M. E. Ossman and H. A. Farag, Desalination, 272,301 (2011).
53. T. Wang, P. Zhang, D. Wu, M. Sun, Y. Deng and R. L. Frost, J. Colloid Interface Sci., 443, 65 (2015).
54. M. E. Mahmoud, E. A. Saad, A. M. El-Khatib, M. A. Soliman and E. A. Allam, Prog. Nucl. Energy, 106, 51 (2018).
55. H. Wang, X. Yuan, Y. Wu, H. Huang, G. Zeng, Y. Liu, X. Wang, N.Lin and Y. Qi, Appl. Surf. Sci., 279, 432 (2013).
56. M. H. Al-Malack and A. A. Basaleh, Desalin. Water Treat., 57, 24519(2016).
57. A. Roy and J. Bhattacharya, Chem. Eng. J., 211-212, 493 (2012).
58. J. Zhao, J. Liu, N. Li, W. Wang, J. Nan, Z. Zhao and F. Cui, Chem.Eng. J., 304, 737 (2016).
59. L. Liu, Y. Luo, W. Tan, F. Liu, S.L. Suib, Y. Zhang and G. Qiu, Environ. Sci. Nano, 4, 811 (2017).
60. T. Velempini, K. Pillay, X. Y. Mbianda and O. A. Arotiba, J. Environ. Sci. (China), 79, 280 (2019).
61. M. Chigondo, H. Kamdem Paumo, M. Bhaumik, K. Pillay and A.Maity, J. Colloid Interface Sci., 532, 500 (2018).
62. E.C. Umejuru, E. Prabakaran and K. Pillay, Results Mater., 7, 100117(2020).
63. A. A. Jalil, S. Triwahyono, M. R. Yaakob, Z. Z. A. Azmi, N. Sapawe,N. H. N. Kamarudin, H. D. Setiabudi, N. F. Jaafar, S. M. Sidik, S. H.Adam and B. H. Hameed, Bioresour. Technol., 120, 218 (2012).
64. T. Velempini, K. Pillay, X. Y. Mbianda and O. A. Arotiba, J. Environ. Sci. (China), 79, 280 (2019).
65. K. Parashar, N. Ballav, S. Debnath, K. Pillay and A. Maity, J. Colloid Interface Sci., 476, 103 (2016).
66. M. Hassan, L. Begun, S. Hosain, P. Poddar, A. Chowdhury and F.Ali, J. Environ. Anal. Toxicol., 7, 433 (2017).
67. J. Wang and C. Chen, Biotechnol. Adv., 27, 195 (2009).
68. Y. Bulut and Z. Tez, J. Environ. Sci., 19, 160 (2007).
69. E. Prabakaran and K. Pillay, J. Saudi Chem. Soc., 24, 584 (2020).
70. E. Prabakaran and K. Pillay, Arab. J. Chem., 13, 3817 (2020).
71. L. Ma, Z. Xia, V. Atuchin, M. Molokeev, S. Auluck, A. H. Reshak and Q. Liu, Phys. Chem. Chem. Phys., 17, 31188 (2015).
72. F. Li, H. Li and T. Cui, Opt. Mater. (Amst), 73, 459 (2017).
73. Y. P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. S. Fernando, P. Pathak,M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, P. G. Luo, H.Yang, M. E. Kose, B. Chen, L. M. Veca and S. Y. Xie, J. Am. Chem.Soc., 128, 7756 (2006).
74. F. Li, X. Wang, W. Liu, L. Wang and G. Wang, Opt. Mater. (Amst),86, 79 (2018).
75. R. Rajan, Y. Zakaria, S. Shamsuddin and N. F. Nik Hassan, Egypt.J. Forensic Sci., 9, 1 (2019).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로