ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 19, 2022
Revised July 25, 2022
Accepted August 17, 2022
Acknowledgements
The authors would like to appreciate Babol Noshirvani University of Technology for providing financial support by awarding a research grant (Grant No.: BNUT/955150003/2019).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Design of novel hyper-branched dendritic boehmite/gallic acid alumoxane for methylene blue removal: Adsorption mechanism and reusability

1Department of Chemical Engineering, Babol Noshirvani University of Technology, Shariati Ave., Babol, Iran 2Smart Materials Group, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
m.hosseini@nit.ac.ir
Korean Journal of Chemical Engineering, April 2023, 40(4), 841-853(13), 10.1007/s11814-022-1264-3
downloadDownload PDF

Abstract

A novel hyper-branched alumoxane with dendritic structure (Alu-Den) was prepared via a polycondensation reaction between hydroxyl groups of boehmite and carboxylic groups of gallic acid for use as an adsorbent for elimination of cationic Methylene blue from aqueous media. The successful formation of tree-like structure of Alu-Den was confirmed by several analyses, including FTIR, XRD, FE-SEM, BET, DLS and TGA. Adsorption variables, such as adsorbent dosage and pH, were optimized to acquire the maximum efficiency for dye removal. The results indicated that 0.02 g Alu-Den can totally eliminate 10 ml Methylene blue with concentration of 20 mg/l at 288 K and pH=10. In case of visionary investigation, the sorption process conformed to the pseudo-second-order kinetic model for all prepared concentrations. The Langmuir, Freundlich and Sips isotherms were evaluated to define the interaction between dye molecules and dendritic alumoxane structures. The results showed that the empirical data were in agreement with the Sips isotherm. Additionally, the spontaneous and exothermic quiddity of Methylene blue adsorption onto Alu-Den surface was divulged by thermodynamics assessments. Eventually, the Alu-Den was regenerated following four time adsorption-desorption cycles without significant loss in adsorption capacity. Hence, owing to its biocompatibility, simply accessible precursors, and high recyclability, the present novel adsorbent offered superior potential for the elimination of cationic dyes from aqueous phase

References

1. S. Ghabaee, J. Behin, M. Ansari and L. Rajabi, Adv. Powder Technol., 31, 2061 (2020).
2. L. Laasri, M. Khalid Elamrani and O. Cherkaoui, Environ. Sci. Pollut. Res.-Int., 14, 237 (2007).
3. T. Robinson, G. McMullan, R. Marchant and P. Nigam, Bioresour.Technol., 77, 247 (2001).
4. M. Berradi, R. Hsissou, M. Khudhair, M. Assouag, O. Cherkaoui,A. El Bachiri and A. El Harfi, Heliyon, 5, e02711 (2019).
5. L. Gan, S. Shang, E. Hu, C. W. M. Yuen and S.-x. Jiang, Appl. Surf.Sci., 357, 866 (2015).
6. M. Muzakkar, D. Wibowo and M. Nurdin, IOP Conference Series:Mater. Sci. Eng., 267, 012035 (2017).
7. V. Katheresan, J. Kansedo and S. Y. Lau, J. Environ. Chem. Eng., 6,4676 (2018).
8. T.-H. Kim, C. Park, J. Yang and S. Kim, J. Hazard. Mater., 112, 95(2004).
9. M. R. S. Kebria, M. Jahanshahi and A. Rahimpour, Desalination,367, 255 (2015).
10. M. Shirzad Kebria, Int. J. Eng., 27, 1173 (2014).
11. M. Muthukumar and N. Selvakumar, Dyes Pigm., 62, 221 (2004).
12. A. Alayli, H. Nadaroglu and E. Turgut, Appl. Water Sci., 11, 1 (2021).
13. Y. Dong, Z. Han, C. Liu and F. Du, Sci. Total Environ., 408, 2245(2010).
14. S. Mishra, L. Cheng and A. Maiti, J. Environ. Chem. Eng., 9, 104901(2021).
15. B. Shi, G. Li, D. Wang, C. Feng and H. Tang, J. Hazard. Mater., 143,567 (2007).
16. B. Mu and A. Wang, J. Environ. Chem. Eng., 4, 1274 (2016).
17. M. F. R. Pereira, S. F. Soares, J. J. Órfão and J. L. Figueiredo, Carbon,41, 811 (2003).
18. A. A. Derakhshan and L. Rajabi, Powder Technol., 226, 117 (2012).
19. A. P. Panda, U. Jha and S. Swain, J. Water Process Eng., 37, 101506(2020).
20. S. J. Obrey and A. R. Barron, J. Chem. Soc., Dalton Trans., 2456(2001).
21. E. Haslam and Y. Cai, Nat. Prod. Rep., 11, 41 (1994).
22. M. R. S. Kebria, A. Rahimpour, S. K. Salestan, S. F. Seyedpour, A.Jafari, F. Banisheykholeslami and N. T. H. Kiadeh, Desalination,479, 114307 (2020).
23. L. Rajabi and A. Derakhshan, Sci. Adv. Mater., 2, 163 (2010).
24. F. Banisheykholeslami, A. A. Ghoreyshi, M. Mohammadi and K.Pirzadeh, CLEAN–Soil, Air, Water, 43, 1084 (2015).
25. M. Dubey, S. Wadhwa and R. Kumar, Mater. Today: Proceedings,28, 70 (2020).
26. M. A. Farghali, M. M. Abo-Aly and T. A. Salaheldin, Inorg. Chem.Commun., 126, 108487 (2021).
27. P. Sirajudheen, P. Karthikeyan, S. Vigneshwaran and S. Meenakshi, Int. J. Biol. Macromol., 175, 361 (2021).
28. A. El-Maghraby and H. El Deeb, Global NEST J., 13, 90 (2011).
29. O. Üner, Ü. Geçgel and Y. Bayrak, Water, Air, Soil Pollut., 227, 1(2016).
30. S. Hoijang, S. Wangkarn, P. Ieamviteevanich, S. Pinitsoontorn, S.Ananta, T. R. Lee and L. Srisombat, Colloids Surf. A: Physicochem.Eng. Aspects, 606, 125483 (2020).
31. S. Marković, A. Stanković, Z. Lopičić, S. Lazarević, M. Stojanović and D. Uskoković, J. Environ. Chem. Eng., 3, 716 (2015).
32. N. Tabrizi and M. Yavari, Chem. Eng. Res. Des., 94, 516 (2015).
33. R. Tang, C. Dai, C. Li, W. Liu, S. Gao and C. Wang, J. Chem., 2017(2017).
34. D. Pathania, S. Sharma and P. Singh, Arabian J. Chem., 10, S1445(2017).
35. A. A. Basaleh, M. H. Al-Malack and T. A. Saleh, J. Environ. Chem.Eng., 7, 103107 (2019).
36. J. Kazemi and V. Javanbakht, Int. J. Biol. Macromol., 154, 1426(2020).
37. P. Wang, Q. Ma, D. Hu and L. Wang, React. Funct. Polym., 91, 43(2015).
38. S. Bagherpour, M. Riazi, M. Riazi, F. B. Cortés and S. H. Mousavi,ACS Omega, 5, 16149 (2020).
39. Y.-M. Hao, C. Man and Z.-B. Hu, J. Hazard. Mater., 184, 392 (2010).
40. S. U. Jan, A. Ahmad, A. A. Khan, S. Melhi, I. Ahmad, G. Sun, C.-M.Chen and R. Ahmad, Environ. Sci. Pollut. Res., 28, 10234 (2021).
41. F. Banisheykholeslami, M. Hosseini and G. N. Darzi, Int. J. Biol.Macromol., 177, 306 (2021).
42. J. Singh and A. Dhaliwal, J. Polym. Environ., 29, 71 (2021).
43. B. Kannamba, K. L. Reddy and B. AppaRao, J. Hazard. Mater.,175, 939 (2010).
44. H. Freundlich, J. Phys. Chem., 57, 1100 (1906).
45. R. R. Bhatt and B. A. Shah, Arabian J. Chem., 8, 414 (2015).
46. D. Balarak, J. Jaafari, G. Hassani, Y. Mahdavi, I. Tyagi, S. Agarwal and V. K. Gupta, Colloids Interface Sci. Commun., 7, 16 (2015).
47. H. Ge, T. Hua and X. Chen, J. Hazard. Mater., 308, 225 (2016).
48. M. Saeed, M. Munir, M. Nafees, S. S. A. Shah, H. Ullah and A.Waseem, Micropor. Mesopor. Mater., 291, 109697 (2020).
49. A. Zahir, Z. Aslam, M. S. Kamal, W. Ahmad, A. Abbas and R. A.Shawabkeh, J. Mol. Liq., 244, 211 (2017).
50. M. Rahman and K. V. Sathasivam, BioMed Res. Int., 2015, 126298(2015).
51. R. Lotfi, B. Hayati, S. Rahimi, A. A. Shekarchi, N. M. Mahmoodi and A. Bagheri, Microchem. J., 146, 1150 (2019).
52. P. Rai, R. K. Gautam, S. Banerjee, V. Rawat and M. Chattopadhyaya, J. Environ. Chem. Eng., 3, 2281 (2015).
53. Y. Zhou, J. Lu, Y. Zhou and Y. Liu, Environ. Pollut., 252, 352 (2019).
54. N. N. Nassar, A. Hassan and P. Pereira-Almao, J. Colloid Interface Sci., 360, 233 (2011)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로