ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 27, 2022
Revised November 11, 2022
Accepted November 17, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Preparation of thermally recyclable -alumina nanoparticles from boehmite for adsorption of anionic dyes: Spectrophotometric study, structural characterization and industrial experience

1Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, Iran 2Center of Excellence for Color Science and Technology, Tehran, Iran 3Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran
salem@sut.ac.ir
Korean Journal of Chemical Engineering, April 2023, 40(4), 863-872(10), 10.1007/s11814-022-1350-6
downloadDownload PDF

Abstract

Alumina powders were produced from the calcination of pseudo-boehmite for scavenging anionic blue (RS 150), and red (RB 133) dyes. The effects of calcination temperature, soaking time, pH, and nanoparticle dosage on dye adsorption were investigated to fabricate a reusable adsorbent. The mentioned dyes can be efficiently adsorbed over the -alumina nanoparticles if the calcination conditions, and pH are identified correctly. The powder calcined at 700 o C within 30 min inherently exhibited a high affinity towards blue dye at pH 5.0, while the proper adsorption towards red dye was achieved at pH 2.0. The maximal blue, and red dye adsorption capacities were determined to be 303, and 417 mg L1 , respectively. Although the calcination of boehmite at 1,000 o C led to the higher chemical resistance, the specific surface area significantly decreased from 202 to 126 m2 g1 , causing a significant drop in the adsorption of blue dye due to an increase in pore diameter, 6 nm. Importantly, the adsorptive performance of produced powder was stable with ten times thermal regeneration. Based on results obtained for the treatment of industrial textile wastewater, the fabricated -alumina powder is promising material to adsorb the anionic dyes.

References

1. T. Xie, K. Chen, H. Xie, C. Miao, M. Yu, F. Li, Y. Chen, X. Yang, P.Li and Q. J. Niu, Appl. Surf. Sci., 599, 153914 (2022).
2. S. Zereshki, P. Daraei and A. Shokri, J. Hazard. Mater., 356, 1(2018).
3. T. T. Lamminmäki, J. P. Kettle, P. J. T. Puukko and P. A. C. Gane,Colloids Surf. A: Physicochem. Eng. Asp., 377(1-3), 304 (2011).
4. F. Mcyotto, Q. Wei, D. K. Macharia, M. Huang, C. Shen and C. W. K.Chow, Chem. Eng. J., 405, 126674 (2021).
5. Y. Sun, D. Li, X. Lu, J. Sheng, X. Zheng and X. Xiao, J. Environ.Manage., 299, 113589 (2021).
6. M. Rezaei and Sh. Salem, Int. J. Chem. Kinet., 48(10), 573 (2016).
7. H. Jabkhiro, K. E. Hassani, M. Chems and A. Anouar, Colloids Interface Sci. Commun., 45, 100549 (2021).
8. W. Zhang, H. Li, X. Kan, L. Dong, H. Yan, Z. Jiang, H. Yang, A. Li and R. Cheng, Bioresour. Technol., 117, 40 (2012).
9. D. Sun, X. Zhang, Y. Wu and X. Liu, J. Hazard. Mater., 181(1-3),335 (2010).
10. N. Atar, A. Olgun, S. Wang and S. Liu, J. Chem. Eng. Data, 56(3),508 (2011).
11. S. Şener, Chem. Eng. J., 138(1-3), 207 (2008).
12. E. Errais, J. Duplay, F. Darragi, I. M'Rabet, A. Aubert, F. Huber and G. Morvan, Desalination, 275(1-3), 74 (2011).
13. E. Alver and A. U. Metin, Chem. Eng. J., 200-202, 59 (2012).
14. Y. An, H. Zheng, Z. Yu, Y. Sun, Y. Wang, C. Zhao and W. Ding, J.Hazard. Mater., 381, 120971 (2020).
15. X. Zhang, Z. Li, S. Lin and P. Théato, ACS Appl. Mater. Interfaces,12(18), 21100 (2020).
16. Y. Li, F. Liu, H. Zhang, X. Li, X. Dong, G. Lu and C. Wang, Mater.Lett., 238, 183 (2019).
17. T. M. F. Marques, D. A. Sales, L. S. Silva, R. D. S. Bezerra, M. S. Silva,J. A. Osajima, O. P. Ferreira, A. Ghosh, E. C. S. Filho, B. C. Viana and J. M. E. Matos, Appl. Surf. Sci., 512, 145659 (2020).
18. P. Saharan, A. K. Sharma, V. Kumar and I. Kaushal, Mater. Chem.Phys., 221, 239 (2019).
19. X. Yu, C. Wei, L. Ke, Y. Hu, X. Xie and H. Wu, J. Hazard. Mater.,180(1-3), 499 (2010).
20. X. Y. Huang, X. Y. Mao, H. T. Bu, X. Y. Yu, G. B. Jiang and M. H.Zeng, Carbohydr. Res., 346(10), 1232 (2011).
21. W. Konicki, I. Pełech, E. Mijowska and I. Jasińska, Chem. Eng. J.,210, 87 (2012).
22. M. I. F. Macedo, C. A. Bertran and C. C. Osawa, J. Mater. Sci., 42,2830 (2007).
23. V. V. Danilevich, O. V. Klimov, K. A. Nadeina, E. Y. Gerasimov, S. V.Cherepanova, Y. V. Vatutina and A. S. Noskov, Superlattices Micro-struct., 120, 148 (2018).
24. F. Karouia, M. Boualleg, M. Digne and P. Alphonse, Adv. Powder Technol., 27(4), 1814 (2016).
25. N. K. Renuka, A. V. Shijina and A. K. Praveen, Mater. Lett., 82, 42(2012).
26. K. Nadafi, M. Vosoughi, A. Asadi, M. O. Borna and M. Shirmardi,J. Water Chem. Technol., 36(3), 125 (2014).
27. S. Banerjee, S. Dubey, R. K. Gautam, M. C. Chattopadhyaya and Y. C. Sharma, Arab. J. Chem., 12(8), 5339 (2019).
28. A. H. Razm, A. Salem and Sh. Salem, J. Hazard. Mater., 429, 128259(2022).
29. M. Malakootian, H. Jafari Mansoorian, A. R. Hosseini and N.Khanjani, Process. Saf. Environ., 96, 125 (2015).
30. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol and K. S. W. Sing, Pure Appl. Chem.,87(9-10), 1051 (2015).
31. X. Zhang, P. L. Huestis, C. I. Pearce, J. Z. Hu, K. Page, L. M. Anovitz, A. B. Aleksandrov, M. P. Prange, S. Kerisit, M. E. Bowden, W.
Cui, Z. Wang, N. R. Jaegers, T. R. Graham, M. Dembowski, H.-W.Wang, J. Liu, A. T. N’Diaye, M. Bleuel, D. F. R. Mildner, T. M.
Orlando, G. A. Kimmel, J. A. La Verne, S. B. Clark and K. M. Rosso,ACS Appl. Nano Mater., 1, 7115 (2018).
32. H. V. Gog, Appl. Surf. Sci., 541, 148501 (2021).
33. S. Ali, Y. Abbas, Z. Zuhra and I. S. Butler, Nanoscale Adv., 1, 213(2019).
34. Z. Aksu, Biochem. Eng. J., 7, 79 (2001).
35. M. M. Mustafa, P. Jamal, M. Alkhatib, S. S. Mahmod, D. N. Jimat and N. N. Ilyas, Electron. J. Biotechn., 26, 7 (2017).
36. A. Banaei, S. Samadi, S. Karimi, H. Vojoudi, E. Pourbasheer and A. Badiei, Powder Technol., 319, 60 (2017).
37. G. B. Hong and Y. K. Wang, Appl. Surf. Sci., 423, 800 (2017).
38. G. Bayramoglu, G. Celik and M. Y. Arica, J. Hazard. Mater., 137,1689 (2006).
39. G. Moussavi and M. Mahmoudi, J. Hazard. Mater., 168, 806 (2009).
40. S. Pourrahim, A. Salem, Sh. Salem and R. Tavangar, Environ. Pollut., 256, 113454 (2020)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로