Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 27, 2022
Revised November 11, 2022
Accepted November 17, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Preparation of thermally recyclable -alumina nanoparticles from boehmite for adsorption of anionic dyes: Spectrophotometric study, structural characterization and industrial experience
Abstract
Alumina powders were produced from the calcination of pseudo-boehmite for scavenging anionic blue
(RS 150), and red (RB 133) dyes. The effects of calcination temperature, soaking time, pH, and nanoparticle dosage on
dye adsorption were investigated to fabricate a reusable adsorbent. The mentioned dyes can be efficiently adsorbed over
the -alumina nanoparticles if the calcination conditions, and pH are identified correctly. The powder calcined at
700 o
C within 30 min inherently exhibited a high affinity towards blue dye at pH 5.0, while the proper adsorption
towards red dye was achieved at pH 2.0. The maximal blue, and red dye adsorption capacities were determined to be
303, and 417 mg L1
, respectively. Although the calcination of boehmite at 1,000 o
C led to the higher chemical resistance, the specific surface area significantly decreased from 202 to 126 m2
g1
, causing a significant drop in the adsorption of blue dye due to an increase in pore diameter, 6 nm. Importantly, the adsorptive performance of produced
powder was stable with ten times thermal regeneration. Based on results obtained for the treatment of industrial textile
wastewater, the fabricated -alumina powder is promising material to adsorb the anionic dyes.
References
2. S. Zereshki, P. Daraei and A. Shokri, J. Hazard. Mater., 356, 1(2018).
3. T. T. Lamminmäki, J. P. Kettle, P. J. T. Puukko and P. A. C. Gane,Colloids Surf. A: Physicochem. Eng. Asp., 377(1-3), 304 (2011).
4. F. Mcyotto, Q. Wei, D. K. Macharia, M. Huang, C. Shen and C. W. K.Chow, Chem. Eng. J., 405, 126674 (2021).
5. Y. Sun, D. Li, X. Lu, J. Sheng, X. Zheng and X. Xiao, J. Environ.Manage., 299, 113589 (2021).
6. M. Rezaei and Sh. Salem, Int. J. Chem. Kinet., 48(10), 573 (2016).
7. H. Jabkhiro, K. E. Hassani, M. Chems and A. Anouar, Colloids Interface Sci. Commun., 45, 100549 (2021).
8. W. Zhang, H. Li, X. Kan, L. Dong, H. Yan, Z. Jiang, H. Yang, A. Li and R. Cheng, Bioresour. Technol., 117, 40 (2012).
9. D. Sun, X. Zhang, Y. Wu and X. Liu, J. Hazard. Mater., 181(1-3),335 (2010).
10. N. Atar, A. Olgun, S. Wang and S. Liu, J. Chem. Eng. Data, 56(3),508 (2011).
11. S. Şener, Chem. Eng. J., 138(1-3), 207 (2008).
12. E. Errais, J. Duplay, F. Darragi, I. M'Rabet, A. Aubert, F. Huber and G. Morvan, Desalination, 275(1-3), 74 (2011).
13. E. Alver and A. U. Metin, Chem. Eng. J., 200-202, 59 (2012).
14. Y. An, H. Zheng, Z. Yu, Y. Sun, Y. Wang, C. Zhao and W. Ding, J.Hazard. Mater., 381, 120971 (2020).
15. X. Zhang, Z. Li, S. Lin and P. Théato, ACS Appl. Mater. Interfaces,12(18), 21100 (2020).
16. Y. Li, F. Liu, H. Zhang, X. Li, X. Dong, G. Lu and C. Wang, Mater.Lett., 238, 183 (2019).
17. T. M. F. Marques, D. A. Sales, L. S. Silva, R. D. S. Bezerra, M. S. Silva,J. A. Osajima, O. P. Ferreira, A. Ghosh, E. C. S. Filho, B. C. Viana and J. M. E. Matos, Appl. Surf. Sci., 512, 145659 (2020).
18. P. Saharan, A. K. Sharma, V. Kumar and I. Kaushal, Mater. Chem.Phys., 221, 239 (2019).
19. X. Yu, C. Wei, L. Ke, Y. Hu, X. Xie and H. Wu, J. Hazard. Mater.,180(1-3), 499 (2010).
20. X. Y. Huang, X. Y. Mao, H. T. Bu, X. Y. Yu, G. B. Jiang and M. H.Zeng, Carbohydr. Res., 346(10), 1232 (2011).
21. W. Konicki, I. Pełech, E. Mijowska and I. Jasińska, Chem. Eng. J.,210, 87 (2012).
22. M. I. F. Macedo, C. A. Bertran and C. C. Osawa, J. Mater. Sci., 42,2830 (2007).
23. V. V. Danilevich, O. V. Klimov, K. A. Nadeina, E. Y. Gerasimov, S. V.Cherepanova, Y. V. Vatutina and A. S. Noskov, Superlattices Micro-struct., 120, 148 (2018).
24. F. Karouia, M. Boualleg, M. Digne and P. Alphonse, Adv. Powder Technol., 27(4), 1814 (2016).
25. N. K. Renuka, A. V. Shijina and A. K. Praveen, Mater. Lett., 82, 42(2012).
26. K. Nadafi, M. Vosoughi, A. Asadi, M. O. Borna and M. Shirmardi,J. Water Chem. Technol., 36(3), 125 (2014).
27. S. Banerjee, S. Dubey, R. K. Gautam, M. C. Chattopadhyaya and Y. C. Sharma, Arab. J. Chem., 12(8), 5339 (2019).
28. A. H. Razm, A. Salem and Sh. Salem, J. Hazard. Mater., 429, 128259(2022).
29. M. Malakootian, H. Jafari Mansoorian, A. R. Hosseini and N.Khanjani, Process. Saf. Environ., 96, 125 (2015).
30. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol and K. S. W. Sing, Pure Appl. Chem.,87(9-10), 1051 (2015).
31. X. Zhang, P. L. Huestis, C. I. Pearce, J. Z. Hu, K. Page, L. M. Anovitz, A. B. Aleksandrov, M. P. Prange, S. Kerisit, M. E. Bowden, W.
Cui, Z. Wang, N. R. Jaegers, T. R. Graham, M. Dembowski, H.-W.Wang, J. Liu, A. T. N’Diaye, M. Bleuel, D. F. R. Mildner, T. M.
Orlando, G. A. Kimmel, J. A. La Verne, S. B. Clark and K. M. Rosso,ACS Appl. Nano Mater., 1, 7115 (2018).
32. H. V. Gog, Appl. Surf. Sci., 541, 148501 (2021).
33. S. Ali, Y. Abbas, Z. Zuhra and I. S. Butler, Nanoscale Adv., 1, 213(2019).
34. Z. Aksu, Biochem. Eng. J., 7, 79 (2001).
35. M. M. Mustafa, P. Jamal, M. Alkhatib, S. S. Mahmod, D. N. Jimat and N. N. Ilyas, Electron. J. Biotechn., 26, 7 (2017).
36. A. Banaei, S. Samadi, S. Karimi, H. Vojoudi, E. Pourbasheer and A. Badiei, Powder Technol., 319, 60 (2017).
37. G. B. Hong and Y. K. Wang, Appl. Surf. Sci., 423, 800 (2017).
38. G. Bayramoglu, G. Celik and M. Y. Arica, J. Hazard. Mater., 137,1689 (2006).
39. G. Moussavi and M. Mahmoudi, J. Hazard. Mater., 168, 806 (2009).
40. S. Pourrahim, A. Salem, Sh. Salem and R. Tavangar, Environ. Pollut., 256, 113454 (2020)