Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 12, 2022
Revised July 7, 2022
Accepted July 13, 2022
- Acknowledgements
- The authors gratefully acknowledge the financial support of the Shahid Bahonar University of Kerman.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Methylene blue adsorption by wheat straw-based adsorbents: Study of adsorption kinetics and isotherms
Abstract
Dyes are one of the major toxic pollutants discharged in large quantities into the hydrosphere. Among various dye removal methods, adsorption has a distinct position. In this study, wheat straw was used as a low-cost and
renewable material to prepare two economical adsorbents through the facile production method. An adsorbent was
prepared by alkaline hydrolysis of wheat straw. Then, another adsorbent was synthesized by carboxymethylation of the
first adsorbent. The prepared adsorbents were characterized by various techniques, including Fourier transform infrared spectroscopy (FT-IR), field-emission scanning electron microscopy (FESEM), and X-ray diffraction (XRD). A series
of adsorption experiments were conducted in a batch adsorption system to study the effect of diverse parameters, such
as solution pH, the initial dye concentration, and contact time, on the adsorption performance. Adsorption models and
kinetic results indicated that the adsorption of methylene blue onto both adsorbents was more fitted to Langmuir isotherm and followed second-order kinetics. The maximum monolayer adsorption capacity of methylene blue on alkalinemodified wheat straw and carboxymethylated modified wheat straw reached 131.123 and 191.427 mg/g, respectively.
Regarding their low cost and suitable adsorption potential, they can be cost-effective and promising adsorbents for
wastewater treatment.
References
2. T. Robinson, B. Chandran and P. Nigam, Bioresour. Technol., 85,119 (2002).
3. V. Katheresan, J. Kansedo and S. Y. Lau, J. Environ. Chem. Eng., 6,4676 (2018).
4. A. Arabpour, S. Dan and H. Hashemipour, Arab. J. Chem., 14,103003 (2021).
5. Y. Su, B. Zhao, W. Xiao and R. Han, Environ. Sci. Pollut. Res., 20,5558 (2013).
6. S. P. Raghuvanshi, R. Singh, C. P. Kaushik and A. Raghav, Appl.Ecol. Environ. Res., 2, 35 (2004).
7. G. Crini, Bioresour. Technol., 97, 1061 (2006).
8. S. Qiao, Q. Hu, F. Haghseresht, X. Hu and G. Q. M. Lu, Sep. Purif.Technol., 67, 218 (2009).
9. S. Banivaheb, S. Dan, H. Hashemipour and M. Kalantari, J. Saudi Chem. Soc., 25, 101283 (2021).
10. S. Afroze and T. K. Sen, Water, Air, Soil Pollut., 229, 1 (2018).
11. H. You, J. Chen, C. Yang and L. Xu, Colloids Surf. A Physicochem.Eng. Asp., 509, 91 (2016).
12. M. J. Ahmed, B. H. Hameed and E. H. Hummadi, J. Mol. Liq., 330,115616 (2021).
13. Y. Liu, X. Zhao, J. Li, D. Ma and R. Han, Desalin. Water Treat., 46,115 (2012).
14. S. S. Lam, P. N. Y. Yek, Y. S. Ok, C. C. Chong, R. K. Liew, D. C. W.Tsang, Y.-K. Park, Z. Liu, C. S. Wong and W. Peng, J. Hazard.Mater., 390, 121649 (2020).
15. J.-Y. Kim, S. Oh and Y.-K. Park, J. Hazard. Mater., 384, 121356(2020).
16. Y. Qiu, Z. Zheng, Z. Zhou and G. D. Sheng, Bioresour. Technol., 100,5348 (2009).
17. S. Ibrahim, I. Fatimah, H.-M. Ang and S. Wang, Water Sci. Technol., 62, 1177 (2010).
18. M. T. Yagub, T. K. Sen and H. M. Ang, Water, Air, Soil Pollut., 223,5267 (2012).
19. W. S. Alencar, E. Acayanka, E. C. Lima, B. Royer, F. E. de Souza, J.Lameira and C. N. Alves, Chem. Eng. J., 209, 577 (2012).
20. Y. Feng, Y. Liu, L. Xue, H. Sun, Z. Guo, Y. Zhang and L. Yang, Bioresour. Technol., 238, 675 (2017).
21. S. Sangon, A. J. Hunt, Y. Ngernyen, S. Youngme and N. Supanchaiyamat, J. Clean. Prod., 318, 128583 (2021).
22. T. S. Khan and U. Mubeen, Curr. Res. J. Biol. Sci., 4, 673 (2012).
23. C. Gao, J. Yang and L. Han, Bioresour. Technol., 326, 124786 (2021).
24. V. P. Chakka and T. Zhou, Int. J. Biol. Macromol., 165, 2425 (2020).
25. G. Liu, Z. Hu, R. Guan, Y. Zhao, H. Zhang and B. Zhang, Korean J. Chem. Eng., 33, 3141 (2016).
26. W. Zou, H. Bai, S. Gao and K. Li, Korean J. Chem. Eng., 30, 111(2013).
27. Dan, S. Banivaheb, H. Hashemipour and M. Kalantari, Polym.Bull., 78, 1887 (2021).
28. I. Kim, M. S. U. Rehman and J.-I. Han, J. Clean. Prod., 66, 555(2014).
29. Q. Lin, K. Wang, M. Gao, Y. Bai, L. Chen and H. Ma, J. Taiwan Inst. Chem. Eng., 76, 65 (2017).
30. B. Yu, G. Fan, S. Zhao, Y. Lu, Q. He, Q. Cheng, J. Yan, B. Chai and G. Song, Appl. Biol. Chem., 64, 1 (2021).
31. C. Aguir and M. F. M’Henni, J. Appl. Polym. Sci., 99, 1808 (2006).
32. H. Bidgoli, A. Zamani and M. J. Taherzadeh, Carbohydr. Res., 345,2683 (2010).
33. A. Abdulhameed, Microwave synthesis of Carboxymethylcellulose (CMC) from rice husk, in: 13TH Int. Conf. (2020).
34. W. Klunklin, K. Jantanasakulwong, Y. Phimolsiripol, N. Leksawasdi,
P. Seesuriyachan, T. Chaiyaso, C. Insomphun, S. Phongthai, P. Jantrawut and S. R. Sommano, Polymers (Basel), 13, 81 (2020).
35. Y. Wu, L. Zhang, C. Gao, J. Ma, X. Ma and R. Han, J. Chem. Eng. Data, 54, 3229 (2009).
36. P. Vollhardt and N. Schore, Organic chemistry: Structure and function, Macmillan Learning publications, New York (2018).
37. M. Goyal, S. Singh and R. C. Bansal, Carbon Lett., 5, 170 (2004).
38. M. T. Yagub, T. K. Sen, S. Afroze and H. M. Ang, Adv. Colloid Interface Sci., 209, 172 (2014).
39. Z. Jia, Z. Li, T. Ni and S. Li, J. Mol. Liq., 229, 285 (2017).
40. K.-J. Hwang, W.-G. Shim, Y. Kim, G. Kim, C. Choi, S. O. Kang and D. W. Cho, Phys. Chem. Chem. Phys., 17, 21974 (2015).
41. K. Li, J. Yan, Y. Zhou, B. Li and X. Li, J. Mol. Liq., 335, 116291 (2021).
42. A. S. Eltaweil, H. A. Mohamed, E. M. Abd El-Monaem and G. M.El-Subruiti, Adv. Powder Technol., 31, 1253 (2020).
43. M. Verma, I. Tyagi, V. Kumar, S. Goel, D. Vaya and H. Kim, J. Environ. Chem. Eng., 9, 106045 (2021).
44. X. Yang, W. Zhu, Y. Song, H. Zhuang and H. Tang, J. Mol. Liq., 340,116617 (2021).
45. S. Dan, M. Kalantari, A. Kamyabi and M. Soltani, Polym. Bull., In press (2021).
46. E. Daneshvar, A. Vazirzadeh, A. Niazi, M. Kousha, M. Naushad and A. Bhatnagar, J. Clean. Prod., 152, 443 (2017).
47. S. Kocaman, Int. J. Phytoremediation, 22, 551 (2020).
48. N. Somsesta, C. Piyamawadee, V. Sricharoenchaikul and D. AhtOng, Korean J. Chem. Eng., 37, 1999 (2020).
49. H. N. Tran, S.-J. You and H.-P. Chao, Korean J. Chem. Eng., 34,1708 (2017).
50. A. H. Jawad, N. S. A. Mubarak and A. S. Abdulhameed, J. Polym.Environ., 28, 624 (2020).
51. M. Song, Z. Duan, R. Qin, X. Xu, S. Liu, S. Song, M. Zhang, Y. Li and J. Shi, Korean J. Chem. Eng., 36, 869 (2019).
52. H. Bai, J. Chen, X. Zhou and C. Hu, Korean J. Chem. Eng., 37, 1926(2020).
53. S. Rangabhashiyam, S. Lata and P. Balasubramanian, Surf. Interfaces,10, 197 (2018).
54. T.S. Chandra, S.N. Mudliar, S. Vidyashankar, S. Mukherji, R. Sarada,K. Krishnamurthi and V. S. Chauhan, Bioresour. Technol., 184, 395(2015).
55. A. A. Babaei, A. Khataee, E. Ahmadpour, M. Sheydaei, B. Kakavandi and Z. Alaee, Korean J. Chem. Eng., 33, 1352 (2016).
56. R. K. Ghosh, D. P. Ray, A. Tewari and I. Das, Int. J. Environ. Sci.Technol., 18, 2747 (2021).
57. R. Gong, Y. Liu, Y. Jiang and C. Li, African J. Biotechnol., 8, 7138(2009).
58. G. Li, W. Zhu, C. Zhang, S. Zhang, L. Liu, L. Zhu and W. Zhao,Bioresour. Technol., 206, 16 (2016).
59. A. Subratti, J. L. Vidal, L. J. Lalgee, F. M. Kerton and N. K. Jalsa,Sustain. Chem. Pharm., 21, 100421 (2021).