Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 12, 2022
Revised July 22, 2022
Accepted August 2, 2022
- Acknowledgements
- This research was financially supported by Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, under grant No. 22039
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Periodate activation by concurrent utilization of UV and US for the degradation of para-nitrophenol in water: A synergistic approach
Abstract
Para-nitrophenol (PNP) is a toxic compound widely used in various industries. The release of PNP into the
environment not only threatens human health but the ecosystem. Hence, the treatment of contaminated water is necessary. Periodate (PI) is a new oxidant which is used for the generation of free radicals. In the current work, PI was concurrently activated by ultraviolet (UV) and ultrasound (US) to eliminate PNP from aqueous solution. The effects of
operating parameters were studied and complete degradation of PNP was obtained in 30 min. The presence of ferrous
ions increased the PNP degradation rate. Scavenging experiments confirmed that HO•
and IO3
•
were corresponding
agents of the PNP degradation, which the latter had a bold role. The performance of PI/UV/US was examined on real
wastewater and the results showed that 70% of total phenol was removed during 60 min. The PNP degradation intermediate was recognized and a pathway of PNP degradation was proposed. Although PI/UV/US process is high energy
consuming, its excellent performance can be a rational reason for the scaling up the process.
References
2. T. Wi-Afedzi, E. Kwon, D. D. Tuan, K.-Y. A. Lin and F. Ghanbari,Sci. Total Environ., 703, 134781 (2020).
3. C. S. D. Rodrigues, O. S. G. P. Soares, M. F. R. Pereira and L. M.Madeira, J. Water Proc. Eng., 44, 102386 (2021).
4. Y. Wang, L. He, G. Lv and X. Sun, Chemosphere, 262, 128015 (2021).
5. C. Zhang, N. Yan, G. Zhu, F. Chen, X. Yu, Z. Huang, Y. Zhang and B. E. Rittmann, Sci. Total Environ., 781, 146697 (2021).
6. Y. M. Hunge, A. A. Yadav, S.-W. Kang, H. Kim, A. Fujishima and C. Terashima, J. Hazard. Mater., 419, 126453 (2021).
7. A. V. Karim, A. Hassani, P. Eghbali and P. V. Nidheesh, Curr. Opin.Solid State Mater. Sci., 26, 100965 (2022).
8. A. Hassani, M. Malhotra, A. V. Karim, S. Krishnan and P. V. Nidheesh, Environ. Res., 205, 112463 (2022).
9. A. Eslami, M. R. Khavari Kashani, A. Khodadadi, G. Varank, A.Kadier, P.-C. Ma, S. Madihi-Bidgoli and F. Ghanbari, J. Water Proc.Eng., 44, 102330 (2021).
10. F. Ghanbari, A. Yaghoot-Nezhad, S. Wacławek, K.-Y. A. Lin, J.Rodríguez-Chueca and F. Mehdipour, Chemosphere, 285, 131455 (2021).
11. D. Yu, L. Li, M. Wu and J. C. Crittenden, Appl. Catal., B, 251, 66(2019).
12. E. Issaka, J. N.-O. Amu-Darko, S. Yakubu, F. O. Fapohunda, N. Ali and M. Bilal, Chemosphere, 289, 133208 (2022).
13. F. Ghanbari, S. Giannakis and S. Samoili, in Persulfate-based oxidation processes in environmental remediation, The Royal Society of
Chemistry, 252 (2022).
14. M. Ahmadi, F. Ghanbari, A. Alvarez and S. Silva Martinez, Korean J. Chem. Eng., 34, 2154 (2017).
15. F. Ghanbari, F. Zirrahi, K.-Y. A. Lin, B. Kakavandi and A. Hassani,J. Environ. Chem. Eng., 8, 104167 (2020).
16. M. R. Khavari Kashani, R. Kiani, A. Hassani, A. Kadier, S. MadihiBidgoli, K.-Y. A. Lin and F. Ghanbari, Sep. Purif. Technol., 292,121026 (2022).
17. L. Yang, L. He, Y. Ma, L. Wu, L. Zheng, J. Wang, Y. Chen, Y. Li and Z. Zhang, Sep. Purif. Technol., 289, 120746 (2022).
18. H. Bendjama, S. Merouani, O. Hamdaoui and M. Bouhelassa,Marine Pollut. Bull., 126, 557 (2018).
19. H. Lee, H.-Y. Yoo, J. Choi, I.-H. Nam, S. Lee, S. Lee, J.-H. Kim, C.Lee and J. Lee, Environ. Sci. Technol., 48, 8086 (2014).
20. J. Du, G. Xiao, Y. Xi, X. Zhu, F. Su and S. H. Kim, Water Res., 169,115278 (2020).
21. Y.-C. Lee, M.-J. Chen, C.-P. Huang, J. Kuo and S.-L. Lo, Ultrason.Sonochem., 31, 499 (2016).
22. X. Li, X. Liu, C. Qi and C. Lin, J. Taiwan Inst. Chem. Eng., 68, 211(2016).
23. M. L. Djaballah, S. Merouani, H. Bendjama and O. Hamdaoui, J.Photochem. Photobiol., A, 408, 113102 (2021).
24. X. Zhang, X. Yu, X. Yu, M. Kamali, L. Appels, B. van der Bruggen,D. Cabooter and R. Dewil, Sci. Total Environ., 782, 146781 (2021).
25. C. Lee and J. Yoon, J. Photochem. Photobiol., A, 165, 35 (2004).
26. A. Eslami, F. Mehdipour, K.-Y. A. Lin, H. Sharifi Maleksari, F. Mirzaei and F. Ghanbari, J. Water Proc. Eng., 33, 100998 (2020).
27. Y. Long, J. Dai, S. Zhao, S. Huang and Z. Zhang, J. Hazard. Mater.,424, 126786 (2022).
28. S. Merouani and O. Hamdaoui, in Applied water science, M. I.Inamuddin, R. B. Ahamed and T. A. Rangreez Eds., Scrivener Publishing LLC, Beverly (2021).
29. X. Tang and L. K. Weavers, J. Photochem. Photobiol., A, 194, 212(2008).
30. W. R. Haag, J. Hoigne´, E. Gassman and A. M. Braun, Chemosphere, 13, 631 (1984).
31. E.-T. Yun, H.-Y. Yoo, W. Kim, H.-E. Kim, G. Kang, H. Lee, S. Lee,T. Park, C. Lee, J.-H. Kim and J. Lee, Appl. Catal., B, 203, 475(2017).
32. F. Ghanbari, M. Riahi, B. Kakavandi, X. Hong and K.-Y. A. Lin, J.Water Proc. Eng., 36, 101321 (2020).
33. C. Luo, S. Wang, D. Wu, X. Cheng and H. Ren, Envriron. Technol.Innov., 25, 102198 (2022).
34. J. Lee, U. von Gunten and J.-H. Kim, Environ. Sci. Technol., 54,3064 (2020).
35. L. He, Y. Shi, Y. Chen, S. Shen, J. Xue, Y. Ma, L. Zheng, L. Wu, Z.Zhang and L. Yang, Sep. Purif. Technol., 288, 120703 (2022).
36. N. E. Chadi, S. Merouani, O. Hamdaoui, M. Bouhelassa and M.Ashokkumar, Environ. Sci. Water Res. Technol., 5, 1985 (2019).
37. P. Sun, C. Tyree and C.-H. Huang, Environ. Sci. Technol., 50, 4448(2016).
38. I. Chakraborty, G. D. Bhowmick, D. Nath, C. N. Khuman, B. K.Dubey and M. M. Ghangrekar, Int. Biodeterior. Biodegradation,156, 105108 (2021).
39. E. Brillas, Sep. Purif. Technol., 284, 120290 (2022).
40. M. Yousefi, F. Ghanbari, M. A. Zazouli and S. Madihi-Bidgoli,Desalin. Water Treat., 70, 364 (2017).
41. M. Dükkancı, Ultrason. Sonochem., 40, 110 (2018).
42. A. Yazdanbakhsh, A. Aliyari, A. Sheikhmohammadi and E. Aghayani,J. Water Proc. Eng., 34, 101080 (2020).
43. L. Fang, R. Jiang, Y. Zhang, R. M. Munthali, X. Huang, X. Wu and Z. Liu, J. Solid State Chem., 303, 122461 (2021).
44. D. Rajamanickam and M. Shanthi, Arabian J. Chem., 9, S1858 (2016).
45. F. Nawaz, H. Cao, Y. Xie, J. Xiao, Y. Chen and Z. A. Ghazi, Chemosphere, 168, 1457 (2017).
46. V. Yadav, P. Verma, H. Sharma, S. Tripathy and V. K. Saini, Environ.Sci. Pollut. Res., 27, 10966 (2020).
47. V. N. Lima, C. S. D. Rodrigues, Y. B. Brandão, M. Benachour and L. M. Madeira, J. Water Proc. Eng., 47, 102685 (2022).
48. C. S. D. Rodrigues and L. M. Madeira, Envriron. Technol. Innov.,21, 101265 (2021).
49. Z. Li, J. Kang, Y. Tang, C. Jin, H. Luo, S. Li, J. Liu, M. Wang and C.Lv, J. Alloys Compd., 858, 157739 (2021).
50. G. Fadillah, T. A. Saleh and S. Wahyuningsih, J. Mol. Liq., 289,111108 (2019).