Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 21, 2022
Revised November 27, 2022
Accepted December 23, 2022
- Acknowledgements
- This work was supported by the Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, Tehran, Iran.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Chemical modification of polystyrene foam using functionalized chitosan with dithiocarbamate as an adsorbent for mercury removal from aqueous solutions
Abstract
One of the major environmental issues today is waste pollution, particularly non-biodegradable wastes
such as polystyrene waste. Furthermore, heavy metal contamination is a major environmental threat. Mercury is one of
the most hazardous and poisonous contaminants, and its usage in various industrial processes has resulted in contaminated effluents being released into surface runoff and groundwater. Because of the beneficial physical properties of
polystyrene foam, this non-biodegradable waste was used in this study as a suitable medium for chemical modification. The polystyrene foam was first modified using crosslinked chitosan, and then it was reacted with carbon disulfide to improve its performance for the removal of Hg2+. The prepared composite was used for the removal of mercury
ions from contaminated water. The adsorbent's physical, chemical, and morphological properties were determined
using energy-dispersive spectroscopy (EDS), Fourier-transform infrared spectroscopy (FT-IR), Field emission scanning
electron microscopy (FE-SEM), and Brauer-Emmett-Teller (BET) analyses. Specific surface area, porosity, and average
pore diameter were determined to be 314.8 m2
/g, 0.345 cm2
/g, and 1.96 nm, respectively. Experiments were designed to
investigate the effects of pH, contact time, and contaminant concentration by the Box-Behnken response surface methodology. The maximum removal percentage of 79.85% was achieved for the initial mercury concentration of 50 mg/L
at pH 4. Moreover, the adsorption was observed to follow the Dubinin-Radushkevich isotherm. Studies on adsorbent
recovery also showed that the adsorbent can be recovered and reused for at least three cycles
References
2. B. Sajjadi, R. M. Shrestha, W. Y. Chen, D. L. Mattern, N. Hammer,V. Raman and A. Dorris, J. Water Process Eng., 39, 101677 (2021).
3. H. F. Raad, A. Pardakhti and H. Kalarestaghi, Pollution, 7, 395(2021).
4. N. J. Langford and R. E. Ferner, J. Hum. Hypertens., 13, 651 (1999).
5. W.-T. Tsai, Sustainability, 14, 1557 (2022).
6. F. Luo, J. L. Chen, L. L. Dang, W. N. Zhou, H. L. Lin, J. Q. Li, S. J.Liu and M. B. Luo, J. Mater. Chem. A., 3, 9616 (2015).
7. A. Prasetya, P. Prihutami, A. D. Warisaura, M. Fahrurrozi and H. T. B. Murti Petrus, J. Environ. Chem. Eng., 8, 103781 (2020).
8. M. Urgun-Demirtas, P. L. Benda, P. S. Gillenwater, M. C. Negri, H.Xiong and S. W. Snyder, J. Hazard. Mater., 215-216, 98 (2012).
9. S. M. Bachand, T. E. C. Kraus, D. Stern, Y. L. Liang, W. R. Horwath and P. A. M. Bachand, Ecol. Eng., 134, 26 (2019).
10. M. Negarestani, H. Farimaniraad, A. Mollahosseini, A. Kheradmand and H. Shayesteh, Int. J. Phytoremediation, 1 (2022).
11. Y. Wang, H. Li, Z. He, M. Zhang, J. Guan, K. Qian, J. Xu and J.Hu, Environ. Sci. Pollut. Res. Int., 27, 30254 (2020).
12. H. Prokkola, E. T. Nurmesniemi and U. Lassi, ChemEngineering, 4,51 (2020).
13. L. Duan, X. Hu, D. Sun, Y. Liu, Q. Guo, T. Zhang and B. Zhang,Korean J. Chem. Eng., 37, 1166 (2020).
14. M. Negarestani, A. Mollahosseini, H. Farimaniraad, H. Ghiasinejad, H. Shayesteh and A. Kheradmand, Sep. Sci. Technol., 58, 435(2022).
15. A. Kheradmand, M. Negarestani, A. Mollahosseini, H. Shayesteh and H. Farimaniraad, Sci. Rep., 12, 16442 (2022).
16. P. Alipour Atmianlu, R. Badpa, V. Aghabalaei and M. Baghdadi, J.Environ. Chem. Eng., 9, 106514 (2021).
17. S. Armenise, W. SyieLuing, J. M. Ramírez-Velásquez, F. Launay, D.Wuebben, N. Ngadi, J. Rams and M. Muñoz, J. Anal. Appl. Pyrol.,158, 105265 (2021).
18. L. Li, J. Wang, C. Jia, Y. Lv and Y. Liu, J. Water Process Eng., 39,101753 (2021).
19. J. Saleem, M. Adil Riaz and M. Gordon, J. Hazard. Mater., 341,424 (2021).
20. M. Janmohammadi, M. Baghdadi, T. M. Adyel and N. Mehrdadi,Sci. Total Environ., 752, 141850 (2021).
21. I. Baker, Fifty Mater. That Make World., 1 (2018).
22. J. Mao, W. Jiang, J. Gu, S. Zhou, Y. Lu and T. Xie, Appl. Surf. Sci.,317, 787 (2014).
23. N. C. F. Machado, L. A. M. de Jesus, P. S. Pinto, F. G. F. de Paula,M. O. Alves, K. H. A. Mendes, R. V. Mambrini, D. Barrreda, V.
Rocha, R. Santamaría, J. P. C. Trigueiro, R. L. Lavall and P. F. R.Ortega, J. Clean. Prod., 313, 127903 (2021).
24. Y. Pu, Z. Xie, H. Ye and W. Shi, Water Sci. Technol., 83, 2192 (2021).
25. A. L. Andrady and M. A. Neal, Philos. Trans. R. Soc. B Biol. Sci.,364, 1977 (2009).
26. C. Yu, W. Lin, J. Jiang, Z. Jing, P. Hong and Y. Li, RSC Adv., 9, 37759(2019).
27. G. Liu, S. Wen, Y. Wang, J. Zhang, S. Huang and A. Chen, Chem.Eng. Sci., 249, 117331 (2022).
28. H. K. No and S. P. Meyers, Rev. Environ. Contam. Toxicol., 163, 1(2000).
29. S. Olivera, H. B. Muralidhara, K. Venkatesh, V. K. Guna, K. Gopal-akrishna and Y. Kumar K., Carbohydr. Polym., 153, 600 (2016).
30. M. V. Tsurkan, A. Voronkina, Y. Khrunyk, M. Wysokowski, I. Petrenko and H. Ehrlich, Carbohydr. Polym., 252, 117204 (2021).
31. R. Vajdi, N. Alvand, M. Baghdadi and G. N. Bidhendi, J. Water Process Eng., 40, 101898 (2021).
32. N. Ahmad, S. Sultana, M. Z. Khan and S. Sabir, Chitosan based nanocomposites as efficient adsorbents for water treatment BT -
modern age waste water problems?: Solutions using applied nanotechnology, in: M. Oves, M. O. Ansari, M. Zain Khan, M. Shahadat, I. M. I. Ismail (Eds.), Springer International Publishing, Cham,69 (2020).
33. H. Zeng, Y. Yu, F. Wang, J. Zhang and D. Li, Colloids Surf. A Physicochem. Eng. Asp., 585, 124036 (2020).
34. P. S. Bakshi, D. Selvakumar, K. Kadirvelu and N. S. Kumar, Int. J.Biol. Macromol., 150, 1072 (2020).
35. F. S. Al-Mubaddel, S. Haider, M. O. Aijaz, A. Haider, T. Kamal, W. A.Almasry, M. Javid and S. U.-D. Khan, Polym. Bull., 74, 1535 (2017).
36. M. Keshvardoostchokami, M. Majidi, A. Zamani and B. Liu, Carbohydr. Polym., 273, 118625 (2021).
37. A. Chen, C. Shang, J. Shao, Y. Lin, S. Luo, J. Zhang, H. Huang, M.Lei and Q. Zeng, Carbohydr. Polym., 155, 19 (2017).
38. J. Yang, Y. Han, Z. Sun, X. Zhao, F. Chen, T. Wu and Y. Jiang, ACS Omega, 6, 15885 (2021).
39. Q. Wang, C. Zheng, Z. Shen, Q. Lu, C. He, T. C. Zhang and J. Liu,Chem. Eng. J., 359, 265 (2019).
40. A. C. Alavarse, E. C. G. Frachini, R. L. C. G. da Silva, V. H. Lima, A.Shavandi and D. F. S. Petri, Int. J. Biol. Macromol., 202, 558 (2022).
41. F. Doustdar, A. Olad and M. Ghorbani, Int. J. Biol. Macromol., 208,912 (2022).
42. B. Gulen and P. Demircivi, J. Mol. Struct., 1206, 127659 (2020).
43. C.-H. Kuo, Y.-C. Liu, C.-M. J. Chang, J.-H. Chen, C. Chang and C.-J. Shieh, Carbohydr. Polym., 87, 2538 (2012).
44. J. Liu, W. Liu, Y. Wang, M. Xu and B. Wang, Appl. Surf. Sci., 367,327 (2016).
45. S. Kamari, F. Ghorbani and A. M. Sanati, Sust. Chem. Pharm., 13,100153 (2019).
46. B. Wang, J. Xia, L. Mei, L. Wang and Q. Zhang, ACS Sust. Chem.Eng., 6, 1343 (2018).
47. M. Baghdadi, J. Environ. Chem. Eng., 5, 1906 (2017).
48. A. Rezk, G. Gediz Ilis and H. Demir, Therm. Sci. Eng. Prog., 34,101429 (2022).
49. M. D. Mullassery, N. B. Fernandez and T. S. Anirudhan, Sep. Sci.Technol., 49, 1259 (2014).
50. K. Johari, N. Saman, S. T. Song, J. Y. Y. Heng and H. Mat, Chem.Eng. Commun., 201, 1198 (2014).
51. H. Cui, Y. Qian, Q. Li, Q. Zhang and J. Zhai, Chem. Eng. J., 211-212, 216 (2012).
52. W. Du, L. Yin, Y. Zhuo, Q. Xu, L. Zhang and C. Chen, Ind. Eng.Chem. Res., 53, 582 (2014).