ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 21, 2022
Revised November 27, 2022
Accepted December 23, 2022
Acknowledgements
This work was supported by the Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, Tehran, Iran.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Chemical modification of polystyrene foam using functionalized chitosan with dithiocarbamate as an adsorbent for mercury removal from aqueous solutions

1Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, Tehran, Iran 2Department of Civil and Environmental Engineering, University of Nebraska, Lincoln, NE, 68588
m.baghdadi@ut.ac.ir
Korean Journal of Chemical Engineering, April 2023, 40(4), 892-902(11), 10.1007/s11814-023-1387-1
downloadDownload PDF

Abstract

One of the major environmental issues today is waste pollution, particularly non-biodegradable wastes such as polystyrene waste. Furthermore, heavy metal contamination is a major environmental threat. Mercury is one of the most hazardous and poisonous contaminants, and its usage in various industrial processes has resulted in contaminated effluents being released into surface runoff and groundwater. Because of the beneficial physical properties of polystyrene foam, this non-biodegradable waste was used in this study as a suitable medium for chemical modification. The polystyrene foam was first modified using crosslinked chitosan, and then it was reacted with carbon disulfide to improve its performance for the removal of Hg2+. The prepared composite was used for the removal of mercury ions from contaminated water. The adsorbent's physical, chemical, and morphological properties were determined using energy-dispersive spectroscopy (EDS), Fourier-transform infrared spectroscopy (FT-IR), Field emission scanning electron microscopy (FE-SEM), and Brauer-Emmett-Teller (BET) analyses. Specific surface area, porosity, and average pore diameter were determined to be 314.8 m2 /g, 0.345 cm2 /g, and 1.96 nm, respectively. Experiments were designed to investigate the effects of pH, contact time, and contaminant concentration by the Box-Behnken response surface methodology. The maximum removal percentage of 79.85% was achieved for the initial mercury concentration of 50 mg/L at pH 4. Moreover, the adsorption was observed to follow the Dubinin-Radushkevich isotherm. Studies on adsorbent recovery also showed that the adsorbent can be recovered and reused for at least three cycles

References

1. S. Yadav, A. Yadav, N. Bagotia, A. K. Sharma and S. Kumar, J. Water Process Eng., 42, 102148 (2021).
2. B. Sajjadi, R. M. Shrestha, W. Y. Chen, D. L. Mattern, N. Hammer,V. Raman and A. Dorris, J. Water Process Eng., 39, 101677 (2021).
3. H. F. Raad, A. Pardakhti and H. Kalarestaghi, Pollution, 7, 395(2021).
4. N. J. Langford and R. E. Ferner, J. Hum. Hypertens., 13, 651 (1999).
5. W.-T. Tsai, Sustainability, 14, 1557 (2022).
6. F. Luo, J. L. Chen, L. L. Dang, W. N. Zhou, H. L. Lin, J. Q. Li, S. J.Liu and M. B. Luo, J. Mater. Chem. A., 3, 9616 (2015).
7. A. Prasetya, P. Prihutami, A. D. Warisaura, M. Fahrurrozi and H. T. B. Murti Petrus, J. Environ. Chem. Eng., 8, 103781 (2020).
8. M. Urgun-Demirtas, P. L. Benda, P. S. Gillenwater, M. C. Negri, H.Xiong and S. W. Snyder, J. Hazard. Mater., 215-216, 98 (2012).
9. S. M. Bachand, T. E. C. Kraus, D. Stern, Y. L. Liang, W. R. Horwath and P. A. M. Bachand, Ecol. Eng., 134, 26 (2019).
10. M. Negarestani, H. Farimaniraad, A. Mollahosseini, A. Kheradmand and H. Shayesteh, Int. J. Phytoremediation, 1 (2022).
11. Y. Wang, H. Li, Z. He, M. Zhang, J. Guan, K. Qian, J. Xu and J.Hu, Environ. Sci. Pollut. Res. Int., 27, 30254 (2020).
12. H. Prokkola, E. T. Nurmesniemi and U. Lassi, ChemEngineering, 4,51 (2020).
13. L. Duan, X. Hu, D. Sun, Y. Liu, Q. Guo, T. Zhang and B. Zhang,Korean J. Chem. Eng., 37, 1166 (2020).
14. M. Negarestani, A. Mollahosseini, H. Farimaniraad, H. Ghiasinejad, H. Shayesteh and A. Kheradmand, Sep. Sci. Technol., 58, 435(2022).
15. A. Kheradmand, M. Negarestani, A. Mollahosseini, H. Shayesteh and H. Farimaniraad, Sci. Rep., 12, 16442 (2022).
16. P. Alipour Atmianlu, R. Badpa, V. Aghabalaei and M. Baghdadi, J.Environ. Chem. Eng., 9, 106514 (2021).
17. S. Armenise, W. SyieLuing, J. M. Ramírez-Velásquez, F. Launay, D.Wuebben, N. Ngadi, J. Rams and M. Muñoz, J. Anal. Appl. Pyrol.,158, 105265 (2021).
18. L. Li, J. Wang, C. Jia, Y. Lv and Y. Liu, J. Water Process Eng., 39,101753 (2021).
19. J. Saleem, M. Adil Riaz and M. Gordon, J. Hazard. Mater., 341,424 (2021).
20. M. Janmohammadi, M. Baghdadi, T. M. Adyel and N. Mehrdadi,Sci. Total Environ., 752, 141850 (2021).
21. I. Baker, Fifty Mater. That Make World., 1 (2018).
22. J. Mao, W. Jiang, J. Gu, S. Zhou, Y. Lu and T. Xie, Appl. Surf. Sci.,317, 787 (2014).
23. N. C. F. Machado, L. A. M. de Jesus, P. S. Pinto, F. G. F. de Paula,M. O. Alves, K. H. A. Mendes, R. V. Mambrini, D. Barrreda, V.
Rocha, R. Santamaría, J. P. C. Trigueiro, R. L. Lavall and P. F. R.Ortega, J. Clean. Prod., 313, 127903 (2021).
24. Y. Pu, Z. Xie, H. Ye and W. Shi, Water Sci. Technol., 83, 2192 (2021).
25. A. L. Andrady and M. A. Neal, Philos. Trans. R. Soc. B Biol. Sci.,364, 1977 (2009).
26. C. Yu, W. Lin, J. Jiang, Z. Jing, P. Hong and Y. Li, RSC Adv., 9, 37759(2019).
27. G. Liu, S. Wen, Y. Wang, J. Zhang, S. Huang and A. Chen, Chem.Eng. Sci., 249, 117331 (2022).
28. H. K. No and S. P. Meyers, Rev. Environ. Contam. Toxicol., 163, 1(2000).
29. S. Olivera, H. B. Muralidhara, K. Venkatesh, V. K. Guna, K. Gopal-akrishna and Y. Kumar K., Carbohydr. Polym., 153, 600 (2016).
30. M. V. Tsurkan, A. Voronkina, Y. Khrunyk, M. Wysokowski, I. Petrenko and H. Ehrlich, Carbohydr. Polym., 252, 117204 (2021).
31. R. Vajdi, N. Alvand, M. Baghdadi and G. N. Bidhendi, J. Water Process Eng., 40, 101898 (2021).
32. N. Ahmad, S. Sultana, M. Z. Khan and S. Sabir, Chitosan based nanocomposites as efficient adsorbents for water treatment BT -
modern age waste water problems?: Solutions using applied nanotechnology, in: M. Oves, M. O. Ansari, M. Zain Khan, M. Shahadat, I. M. I. Ismail (Eds.), Springer International Publishing, Cham,69 (2020).
33. H. Zeng, Y. Yu, F. Wang, J. Zhang and D. Li, Colloids Surf. A Physicochem. Eng. Asp., 585, 124036 (2020).
34. P. S. Bakshi, D. Selvakumar, K. Kadirvelu and N. S. Kumar, Int. J.Biol. Macromol., 150, 1072 (2020).
35. F. S. Al-Mubaddel, S. Haider, M. O. Aijaz, A. Haider, T. Kamal, W. A.Almasry, M. Javid and S. U.-D. Khan, Polym. Bull., 74, 1535 (2017).
36. M. Keshvardoostchokami, M. Majidi, A. Zamani and B. Liu, Carbohydr. Polym., 273, 118625 (2021).
37. A. Chen, C. Shang, J. Shao, Y. Lin, S. Luo, J. Zhang, H. Huang, M.Lei and Q. Zeng, Carbohydr. Polym., 155, 19 (2017).
38. J. Yang, Y. Han, Z. Sun, X. Zhao, F. Chen, T. Wu and Y. Jiang, ACS Omega, 6, 15885 (2021).
39. Q. Wang, C. Zheng, Z. Shen, Q. Lu, C. He, T. C. Zhang and J. Liu,Chem. Eng. J., 359, 265 (2019).
40. A. C. Alavarse, E. C. G. Frachini, R. L. C. G. da Silva, V. H. Lima, A.Shavandi and D. F. S. Petri, Int. J. Biol. Macromol., 202, 558 (2022).
41. F. Doustdar, A. Olad and M. Ghorbani, Int. J. Biol. Macromol., 208,912 (2022).
42. B. Gulen and P. Demircivi, J. Mol. Struct., 1206, 127659 (2020).
43. C.-H. Kuo, Y.-C. Liu, C.-M. J. Chang, J.-H. Chen, C. Chang and C.-J. Shieh, Carbohydr. Polym., 87, 2538 (2012).
44. J. Liu, W. Liu, Y. Wang, M. Xu and B. Wang, Appl. Surf. Sci., 367,327 (2016).
45. S. Kamari, F. Ghorbani and A. M. Sanati, Sust. Chem. Pharm., 13,100153 (2019).
46. B. Wang, J. Xia, L. Mei, L. Wang and Q. Zhang, ACS Sust. Chem.Eng., 6, 1343 (2018).
47. M. Baghdadi, J. Environ. Chem. Eng., 5, 1906 (2017).
48. A. Rezk, G. Gediz Ilis and H. Demir, Therm. Sci. Eng. Prog., 34,101429 (2022).
49. M. D. Mullassery, N. B. Fernandez and T. S. Anirudhan, Sep. Sci.Technol., 49, 1259 (2014).
50. K. Johari, N. Saman, S. T. Song, J. Y. Y. Heng and H. Mat, Chem.Eng. Commun., 201, 1198 (2014).
51. H. Cui, Y. Qian, Q. Li, Q. Zhang and J. Zhai, Chem. Eng. J., 211-212, 216 (2012).
52. W. Du, L. Yin, Y. Zhuo, Q. Xu, L. Zhang and C. Chen, Ind. Eng.Chem. Res., 53, 582 (2014).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로