ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 24, 2022
Revised September 5, 2022
Accepted September 5, 2022
Acknowledgements
P. Jafari would like to thank for a post doctorate grant (64248) of Tabriz University of Medical Sciences (Iran) for supporting this work.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effect of temperature and composition on solubility and thermodynamics of salicylic acid in aqueous mixtures of betaine-based deep eutectic solvents

1Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran 2Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences, Tabriz, Iran 3Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran 4Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran 5Faculty of Pharmacy, Near East University, PO BOX: 99138 Nicosia, North Cyprus, Mersin 10, Turkey
ajouyban@hotmail.com
Korean Journal of Chemical Engineering, April 2023, 40(4), 910-924(15), 10.1007/s11814-022-1284-z
downloadDownload PDF

Abstract

Solubility of salicylic acid in binary mixtures of water and betaine/propylene glycol (Bet/PG, molar ratio of 1 : 5), betaine/ethylene glycol (Bet/EG, molar ratio of 1 : 3) or betaine/glycerol (Bet/Gly, molar ratio of 1 : 3) deep eutectic solvents (DESs) was investigated via the shake flask method at 293.15-313.15 K under atmospheric pressure (85 kPa). The results indicate that the solubility values are enhanced with mass fraction of each DES and temperature and DES containing PG is the best cosolvent. The Hansen solubility parameter (HSP) of salicylic acid, neat solvents of each DES and water was calculated and used to predict the solubility of drug in each neat solvent. The experimental solubility values were in good agreement with the ones predicted from HSPs. Three cosolvency models (Jouyban-Acree, Jouyban-Acree-van’t Hoff and the modified version of Jouyban-Acree-van’t Hoff) and two activity coefficient models (NRTL and UNIQUAC) were selected to correlate the solubility data. Based on the obtained percentage mean relative deviations (MRD%) for back-calculated data, all the investigated models show good correlation and validation. Additionally, investigation of the apparent thermodynamic analysis presented an endothermic and entropy-driven dissolution of salicylic acid in all cosolvent compositions including neat DESs and wate

References

1. V. Panahi Azar, A. Jouyban and F. Khonsari, J. Mol. Liq., 160, 14(2011).
2. Kirk-Othmer, Encyclopedia of chemical technology, Wiley, New York(1997).
3. United States Pharmacopeia, US Pharmaceutical Convention, Rockville, MD (2002).
4. A. Jouyban, J. Pharm. Pharm. Sci., 11, 32 (2008).
5. A. Jouyban, Handbook of solubility data for pharmaceuticals, CRC Press: Boca Raton, FL (2010).
6. F. J. Martínez, A. Jouyban and W. E. Acree Jr., Pharm. Sci., 23, 1(2017).
7. S. H. Yalkowsky, Solubility and solubilization in aqueous media,American Chemical Society and Oxford University Press, New York (1999).
8. M. E. Aulton, Pharmaceutics: The science of dosage forms design, 2nd ed., Churchill Livingstone, London (2002).
9. A. D. Khan and L. Singh, J. Drug Deliv. Therap., 6, 34 (2016).
10. V. Shukla and R. Scholar, J. Med. Pharm. Allied Sci., 1, 18 (2012).
11. P. Kolar, J. W. Shen, A. Tsuboi and T. Ishikawa, Fluid Phase Equilib.,194-197, 771 (2002).
12. D. Singh, N. Bedi and A. K. Tiwary, J. Pharm. Invest., 48, 509 (2018).
13. J. Lim, S. Jang, H. K. Cho, M. S. Shin and H. Kim, J. Chem. Thermodyn., 57, 295 (2013).
14. M. A. Fakhree, S. Ahmadian, V. Panahi-Azar, W. E. Acree Jr. and A. Jouyban, J. Chem. Eng. Data, 57, 3303 (2012).
15. A. Shalmashi and A. Eliassi, J. Chem. Eng. Data, 53, 199 (2008).
16. H. Matsuda, K. Kaburagi, S. Matsumoto, K. Kurihara, K. Tochigi and K Tomono, J. Chem. Eng. Data, 54, 480 (2009).
17. M. Sadeghi and A.C. Rasmuson, J. Chem. Eng. Data, 65, 4855 (2020).
18. M. Barzegar-Jalali, P. Jafari and A. Jouyban, J. Mol. Liq., 349, 118199(2021).
19. E. L. Smith, A. P. Abbott and K. S. Ryder, Chem. Rev., 114, 11060(2014).
20. Y. Marcus, Deep Eutectic Solvents, Springer Cham, Springer Nature Switzerland (2019).
21. L.I. Tome, V. Baiao, W. da Silva and C.M. Brett, Appl. Mater. Today,10, 30 (2018).
22. Y. Dai, G. J. Witkamp, R. Verpoorte and Y. H. Choi, Food Chem.,187, 14 (2015).
23. M. Moradi and A. Jouyban, J. Mol. Liq., 345, 117023 (2022).
24. M. Barzegar-Jalali, P. Jafari and A. Jouyban, Fluid Phase Equilib.,560, 113508 (2022).
25. S. Chanioti and C. Tzia, Innov. Food Sci. Emerg. Technol., 48, 228(2018).
26. C. R. Day and S. A. Kempson, Biochim. Biophys. Acta, 1860, 1098(2016).
27. M. Francisco, A. van den Bruinhorst and M. C. Kroon, Ang. Chemie Int. Ed., 52, 3074 (2013).
28. Y. Dai, J. van Spronsen, G. J. Witkamp, R. Verpoorte and Y. H.
29. B. Yang, Q. Zhang, Y. Fei, F. Zhou, P. Wang and Y. Deng, Green Chem., 17, 3798 (2015).
30. T. Jelinski, M. Przybylek and P. Cysewski, Pharm. Res., 36, 116(2019).
31. S. Daneshjou, S. Khodaverdian, B. Dabirmanesh, F. Rahimi, S. Daneshjoo, F. Ghazi and K. Khajeh, J. Mol. Liq., 227, 21 (2017).
32. K. Radosevic, I. Canak, M. Panic, K. Markov, M. C. Bubalo, J.Frece, V. G. Srcek and I. R. Redovnikovic, Environ. Sci. Pollut. Res Int., 25, 14188 (2018).
33. M. Hayyan, C. Y. Looi, A. Hayyan, W. F. Wong and M. A. Hashim,PLOS ONE, 10, e0117934 (2015).
34. A. Jouyban and M. A. Fakhree, in Toxicity and drug testing, W. E.Acree Jr (Ed.), Intech Co, New York (2012).
35. A. Jouyban and W. E. Acree Jr., J. Mol. Liq., 256, 541 (2018).
36. A. Fathi-Azarbayjani, M. Abbasi, J. Vaez-Gharamaleki and A. Jouyban, J. Mol. Liq., 215, 339 (2016).
37. H. Ma, Y. Qu, Z. Zhou, S. Wang and L. Li, J. Chem. Eng. Data, 57,2121 (2012).
38. Q. Gao, P. Zhu, H. Zhao, A. Farajtabar, A. Jouyban and W. E. Acree Jr., J. Chem. Thermodyn., 161, 106517 (2021).
39. C. C. Chen, H. I. Britt, J. F. Boston and L. B. Evans, AIChE J., 28,588 (1982).
40. D. S. Abrams and J. M. Prausnitz, AIChE J., 21, 116 (1975).
41. G. Maurer and J. M. Prausnitz, Fluid Phase Equilib., 2, 91 (1978).
42. M. Rogosic, A. Kristo and K. Z. Kucan, Braz. J. Chem. Eng., 36, 1703(2021).
43. A. Jouyban and M. A. Fakhree, Experimental, computational methods pertaining to drug solubility, Toxicity Drug Test (2012).
44. H. Shekaari, M. T. Zafarani-Moattar and M. Mokhtarpour, Fluid Phase Equilib., 462, 100 (2018).
45. D. Warminska, B. Nowosielski, A. Szewczyk, J. Ruszkowski and M.Prokopowicz, J. Mol. Liq., 323, 114834 (2021).
46. P. B. Sanchez, B. Gonzalez, J. Salgado, J. Jose Parajo and A. Domínguez, J. Chem. Thermodyn., 131, 517 (2019).
47. A. Jouyban, M. Khoubnasabjafari, H. K. Chan and W. E. Acree Jr.,Pharmazie, 61, 789 (2006).
48. A. Bondi, Physical properties of molecular crystals, liquids and glasses,Wiley, New York (1968).
49. J. M. Prausnitz, R. N. Richtenthaler and E. G. Azevedo, Molecular thermodynamics of fluid-phase equilibria, Upper Saddle River, New
Jersey, Prentice-Hall (1999).
50. C. L. Yaws, X. M. Wang and M. A. Satyro, Solubility parameter, liquid volume, and Van Der Waals volume and area, In: Yaws CL,editor. Chemical properties handbook: physical, thermodynamic,environmental, transport, safety, and health related properties for organic and inorganic chemicals, New York, McGraw Hill (1999).
51. A. Fredenslund, R. L. Jones and J. M. Prausnitz, AIChE J., 21, 1086(1975).
52. E. S. Domalski and E. D. Hearing, J. Phys. Chem. Ref. Data, 3, 1(1996).
53. J. H. Hildebrand and R. L. Scott, Regular solutions, Prentice-Hall(1962).
54. C. M. Hansen, Danish Technical: Copenhagen, 14 (1967).
55. C. M. Hansen, A User’s Handbook, CRC Press (2002).
56. D. W. Van Krevelen, edited by K. Te. Nijenhuis, Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions, Elsevier(2009).
57. H. Shekaari, M. T. Zafarani-Moattar and B. Mohammadi, J. Chem.Eng. Data, 64, 3904 (2019).
58. S. Just, F. Sievert, M. Thommes and J. Breitkreutz, Eur. J. Pharm.Biopharm., 85, 1191 (2013).
59. H. Shekaari, M. T. Zafarni-Moattar, M. Mokhtarpour and S. Faraji,Sci. Rep., 11, 24081 (2021).
60. C. Cheng, Y. Cong, C. B. Du, J. Wang, G. B. Yao and H. K. Zhao, J.Chem. Thermodyn., 101, 372 (2016).
61. N. J. Adel, M. Chokri and A. Arbi, J. Chem. Thermodyn., 55, 75(2012).
62. F. Martinez and A. Gomez, J. Sol. Chem., 30, 909 (2001).
63. M. Aragon, J. E. Rosas and F. Martinez, Braz. J. Pharm. Sci., 46, 227(2010).
64. C. M. Avila and F. Martínez, J. Sol. Chem., 31, 975 (2002).
65. F. L. Nordstro and A. C. Rasmuson, J. Chem. Eng. Data, 51, 1668(2006).
66. A. Li and S. H. Yalkowsky, Ind. Eng. Chem. Res., 37, 4470 (1998).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로