Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 7, 2022
Revised September 23, 2022
Accepted September 25, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Separation of CO2 and H2S from natural gas of iranian gas refinery using ionic liquids: Experimental measurements and thermodynamic modeling
Abstract
Separation of the acid gases and reducing their amount from natural gas is very important in the gas purification industries. In this study, the solubility of natural gas (a mixture of CO2, H2S, CH4, C2H6, etc.) was experimentally measured in three different ionic liquids: 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([Hmim]
[Tf2N]), 1-hexyl-3-methylimidazolium nitrate ([Hmim][NO3]) and 1-butyl-3-methylimidazolium acetate ([Bmim][Ac]).
The experimental solubility data was obtained for the temperatures of 298.15 K, 318.15 K, and 338.15 K in pressure
range up to 40 bar. Selectivity of CO2/CH4, CO2/H2S and H2S/CH4 in the studied ionic liquids was also reported in this
work. [Bmim][Ac] showed the best performance of absorbing CO2 and H2S compared to other ionic liquids. However,
[Hmim][Tf2N] showed higher selectivity for CO2 over CH4 in comparison with [Hmim][NO3] and [Bmim][Ac]. Finally,
the sPC-SAFT equation of state was successfully used to predict the natural gas solubility in ionic liquids. The results
show that the model predictions are consistent with experimental data
Keywords
References
2. S. H. Jamali, M. Ramdin, T. M. Becker, A. Torres-Knoop, D. Dubbeldam, W. Buijs and T. J. H. Vlugt, Fluid Phase Equilib., 433, 50(2017).
3. M. Ramdin, S. P. Balaji, A. Torres-Knoop, D. Dubbeldam, T. W. de Loos and T. J. H. Vlugt, J. Chem. Eng. Data, 60, 3039 (2015).
4. S. M. Hailegiorgis, S. N. Khan, N. H. H. Abdolah, M. Ayoub and A. Tesfamichael, AIP Conf. Proc., 1891, 020046 (2017).
5. Z. Feng, M. Jing-Wen, Z. Zheng, W. You-Ting and Z. Zhi-Bing,Chem. Eng. J., 181-182, 222 (2012).
6. M. Mirzaei, B. Mokhtarani, A. Badiei and A. Sharifi, J. Chem. Thermodyn., 122, 31 (2018).
7. K. Golzar, S. Amjad-Iranagh and H. Modarress, Ind. Eng. Chem.Res., 53, 7247 (2014).
8. M. B. Shiflett and A. Yokozeki, J. Phys. Chem. B., 111, 2070 (2007).
9. J. E. Bara, C. J. Gabriel, T. K. Carlisle, D. E. Camper, A. Finotello,D. L. Gin and R. D. Noble, Chem. Eng. J., 147, 43 (2009).
10. P. Scovazzo, D. Camper, J. Kieft, J. Poshusta, C. Koval and R. Noble,Ind. Eng. Chem. Res., 43, 6855 (2004).
11. S. Kumar, J. H. Cho and I. Moon, Int. J. Greenh. Gas Control., 20,87 (2014).
12. S. K. Kailasa, J. R. Koduru, K. Vikrant, Y. F. Tsang, R. K. Singhal,C. M. Hussain and K.-H. H. Kim, J. Mol. Liq., 297, 111886 (2020).
13. N. MacDowell, N. Florin, A. Buchard, J. Hallett, A. Galindo, G. Jackson, C. S. Adjiman, C. K. Williams, N. Shah and P. Fennell, Energy
Environ. Sci., 3, 1645 (2010).
14. A. Maiti, ChemSusChem., 2, 628 (2009).
15. M. Hasib-ur-Rahman, M. Siaj and F. Larachi, Chem. Eng. Process.Process Intensif., 49, 313 (2010).
16. R. E. Baltus, B. H. Culbertson, S. Dai, H. Luo and D. W. DePaoli, J.Phys. Chem. B., 108, 721 (2004).
17. D. Camper, J. E. Bara, D. L. Gin and R. D. Noble, Ind. Eng. Chem.Res., 47, 8496 (2008).
18. S. N. V. K. Aki, B. R. Mellein, E. M. Saurer and J. F. Brennecke, J.Phys. Chem. B., 108, 20355 (2004).
19. Z. Lei, C. Dai and B. Chen, Chem. Rev., 114, 1289 (2014).
20. F. Shaahmadi, B. Hashemi Shahraki and A. Farhadi, J. Chem. Thermodyn., 141, 105922 (2020).
21. S. Mortazavi‐Manesh, M. A. Satyro and R. A. Marriott, AIChE J.,59, 2993 (2013).
22. Y. J. Heintz, L. Sehabiague, B. I. Morsi, K. L. Jones, D. R. Luebke and H. W. Pennline, Energy Fuels, 23, 4822 (2009).
23. G. Cui, J. Wang and S. Zhang, Chem. Soc. Rev., 45, 4307 (2016).
24. B. R. Mellein, A. M. Scurto and M. B. Shiflett, Curr. Opin. Green Sustain. Chem., 28, 100425 (2021).
25. L. Y. Wang, Y. L. Xu, Z. D. Li, Y. N. Wei and J. P. Wei, Energy Fuels,32, 10 (2018).
26. A. H. Jalili, M. Mehrabi, A. T. Zoghi, M. Shokouhi and S. A. Taheri,Fluid Phase Equilib., 453, 1 (2017).
27. F. Shaahmadi, B. Hashemi Shahraki and A. Farhadi, J. Chem. Eng.Data, 64(2), 584 (2019).
28. A. Grenner, G. M. Kontogeorgis, N. von Solms and M. L. Michelsen,Fluid Phase Equilib., 258, 83 (2007).
29. J. Gross and G. Sadowski, Ind. Eng. Chem. Res., 40, 1244 (2001).
30. M. Abolala and F. Varaminian, J. Mol. Liq., 187, 359 (2013).
31. J. Safarov, R. Hamidova, S. Zepik, H. Schmidt, I. Kul, A. Shahverdiyev and E. Hassel, J. Mol. Liq., 187, 137 (2013).
32. M. Iguchi, Y. Hiraga, Y. Sato, T. M. Aida, M. Watanabe and R. L. Smith, J. Chem. Eng. Data, 59, 709 (2014).
33. J. M. S. S. Esperança, H. J. R. Guedes, J. N. Canongia Lopes and L. P. N. Rebelo, J. Chem. Eng. Data, 53, 867 (2008).
34. R. Gomes De Azevedo, J. M. S. S. Esperança, J. Szydlowski, Z. P.Visak, P. F. Pires, H. J. R. Guedes and L. P. N. Rebelo, J. Chem. Thermodyn., 37, 888 (2005).
35. M. Kanakubo and K. R. Harris, J. Chem. Eng. Data, 60, 1408 (2015).
36. K. R. Seddon, A. Stark and M.-J. Torres, ACS Symposium Ser., 819,34 (2002).
37. Z. Khedri, M. Almasi and A. Maleki, J. Chem. Eng. Data, 64, 4465(2019).
38. Y. Hiraga, A. Kato, Y. Sato and R. L. Smith, J. Chem. Eng. Data, 60,876 (2015).
39. S. Stevanovic, A. Podgoršek, A. A. H. Pádua and M. F. Costa Gomes,J. Phys. Chem. B., 116, 14416 (2012).
40. H. F. D. Almeida, H. Passos, J. A. Lopes-da-Silva, A. M. Fernandes,M. G. Freire and J. A. P. Coutinho, J. Chem. Eng. Data, 57, 3005
(2012).
41. A. H. Jalili, M. Safavi, C. Ghotbi, A. Mehdizadeh, M. Hosseini-Jenab and V. Taghikhani, J. Phys. Chem. B., 116, 2758 (2012).