Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 18, 2022
Revised November 8, 2022
Accepted November 13, 2022
- Acknowledgements
- The Korea National Research Foundation grant funded by the Korean government endorsed this work (No. 2018R1A6A1A030 24509 and 2021R1I1A1A0105510212). D.G.C. acknowledges the KAIX program (KAIST), Professors Hee-Seung Lee and YoungMin Rhee (Dept. of Chem., KAIST) for financial assistance during the fiscal years of 2020 and 2021, and International Joint Usage Project with ICR, Kyoto University (2019-115 and 2020-124).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Microstructural and thermal investigation of the bioinspired and synthetic fire-retardant materials deposited on cotton using LBL process
Abstract
A detailed comparison of the bio- and synthetic polymers based layer by layer (LBL) coatings on a singular cotton fabric substrate was carried out. The growth of the deposited layers and subsequent properties, that could
govern the fire protection of the substrate, were studied using low voltage-scanning electron microscope (LV-SEM) and
thermal analysis techniques. From the 2D and 3D microstructural evaluation, uniform layered structure, agglomerated/
precipitated structures and inter-fibers connecting layered-structure were explored, more thoroughly for chitosan and
alginate based (CHI-2, ALG-2) biopolymer coatings, whereas the microstructure of synthetic polymers-based coatings
ammonium polyphosphate and Polyvinyl Alcohol (APP-2 and PVA-2) showed only uniform layers. From the microthermal evaluation (TGA and MCC), a two-step degradation was recorded for all samples with a higher char residue
recorded for APP-2 (TGA, ~39.2%, at 600 o
C, MCC ~33.0% at 800 o
C) followed by CHI-2 (TGA, ~12.5% at 600 o
C,
MCC, ~8.92% at 800 o
C) suggesting superiority of the APP-2 based deposition over that of CHI-2. In addition, the
same pattern of dominance was found consistent with the peak heat release rate (PHRR) values and total heat release
(THR) values for APP~ (85.1 W/g, 6.53 KJ/g), and CHI-2~ (227.74 W/g, 17.17 KJ/g), respectively. However, from the
VFT analysis, both samples were found to have comparable properties, in terms of structural integrations, char residue, and flame resistance.
Keywords
References
2. B. Nabil, C. Christine, V. Julien and A. Abdelkrim, Chem. Eng. J.,351, 328 (2018).
3. T. Chen, J. Hong, C. Peng, G. Chen, C. Yuan, Y. Xu, B. Zeng and L. Dai, Carbohydr. Polym., 208, 14 (2019).
4. W. Wang, J. Wang, X. Wang, S. Wang, X. Liu, P. Qi, H. Li, J. Sun,W. Tang and S. Zhang, Prog. Org. Coat., 149, 105930 (2020).
5. P. J. Wakelyn, N. R. Bertoniere, A. D. French, D. P. Thibodeaux,B. A. Triplett, M.-A. Rousselle, W. R. Goynes Jr., J. Vincent Edwards,L. Hunter, D. D. McAlister and G. R. Gamble, Cotton Fiber Chem.Technol., Taylor & Francis, United Kingdom (2007).
6. B. Hou, K. Song, Z. Ur Rehman, T. Song, T. Lin, W. Zhang, Y.-T.Pan and R. Yang, ACS Appl. Mater. Interfaces, 14(12), 14805 (2022).
7. K. Song, B. Hou, Z. Ur Rehman, Y.-T. Pan, J. He, D.-Y. Wang and R. Yang, Chem. Eng. J., 448, 137666 (2022).
8. P. Reddy, G. Agathian and A. Kumar, J. Radiat. Phys. Chem., 72(4),511 (2005).
9. H. Yuan, W. Xing, P. Zhang, L. Song and Y. Hu, Ind. Eng. Chem.Res., 51(15), 5394 (2012).
10. K. Xie, A. Gao and Y. Zhang, Carbohydr. Polym., 98(1), 706 (2013).
11. J. Alongi and G. Malucelli, J. Mater. Chem., 22(41), 21805 (2012).
12. J. Alongi, F. Carosio and G. Malucelli, Polym. Degrad. Stabil., 106,138 (2014).
13. A.-L. Davesne, M. Jimenez, F. Samyn and S. Bourbigot, Prog. Org.Coat., 154, 106217 (2021).
14. K. M. Holder, R. J. Smith and J. C. Grunlan, J. Mater. Sci., 52(22),12923 (2017).
15. O. Köklükaya, R.-M. P. Karlsson, F. Carosio and L. Wågberg, J. Carbohydr. Polym., 255, 117468 (2021).
16. C. K. Kundu, Z. Li, L. Song and Y. Hu, Eur. Polym. J., 137, 109911(2020).
17. S. T. Lazar, T. J. Kolibaba and J. C. Grunlan, Nat. Rev. Mater., 5(4),259 (2020).
18. P. Bertrand, A. Jonas, A. Laschewsky and R. Legras, Macromol.Rapid Commun., 21(7), 319 (2000).
19. G. Decher and J. B. Schlenoff, Multilayer thin films: Sequential assembly of nanocomposite materials, Wiley Online Library, Uniited States
(2002).
20. F. Lv, Z. Peng, L. Zhang, L. Yao, Y. Liu and L. Xuan, J. Liq. Cryst.,36(1), 43 (2009).
21. Y. Shimazaki, R. Nakamura, S. Ito and M. Yamamoto, Langmuir,17(3), 953 (2001).
22. J. Sun, T. Wu, F. Liu, Z. Wang, X. Zhang and J. Shen, Langmuir,16(10), 4620 (2000).
23. G. Fleer, M. C. Stuart, J. M. Scheutjens, T. Cosgrove and B. Vincent,Polymers at interfaces, Springer Science & Business Media (1993).
24. M. Kweon, P. Bhirud and F. S. Saskatoon, J. Starch‐Stärke, 48(6), 214(1996).
25. J. Addison, Regul. Toxicol. Pharmacol., 21(3), 397 (1995).
26. Y. C. Li, S. Mannen, A. B. Morgan, S. Chang, Y. H. Yang, B. Condon and J. C. Grunlan, Adv. Mater., 23(34), 3926 (2011).
27. J. Alongi, F. Carosio and G. Malucelli, Polym. Degrad. Stabil., 97(9),1644 (2012).
28. F. Carosio, J. Alongi and G. Malucelli, Carbohydr. Polym., 88(4), 1460(2012).
29. L.-l. Wang, T. Zhang, H.-q. Yan, M. Peng, Z.-p. Fang, Y. Li and W.Hao, Chin. J. Polym. Sci., 32(3), 305 (2014).
30. F. Carosio, C. Negrell-Guirao, A. Di Blasio, J. Alongi, G. David and G. Camino, Carbohydr. Polym., 115, 752 (2015).
31. K. Apaydin, A. Laachachi, V. Ball, M. Jimenez, S. Bourbigot and D.Ruch, Colloids Surf. A: Physicochem. Eng. Asp., 469, 1 (2015).
32. Z. Ur Rehman, S.-H. Huh, Z. Ullah, Y.-T. Pan, D. G. Churchill and B. H. Koo, Carbohydr. Polym., 274, 118626 (2021).
33. F. Carosio, J. Alongi, C. Paravidino and A. Frache, Materials (Basel),10(7), 709 (2017).
34. T. Zhang, H. Yan, M. Peng, L. Wang, H. Ding and Z. Fang, Nanoscale, 5(7), 3013 (2013).
35. Ş. S. Uğur, M. Sarıışık and A. H. Aktaş, Mater. Res. Bull., 46(8),1202 (2011).
36. X. Wang, Y.-T. Pan, J.-T. Wan and D.-Y. Wang, RSC Adv., 4(86),46164 (2014).
37. G. Laufer, C. Kirkland, A. B. Morgan and J. C. Grunlan, Biomacromolecules, 13(9), 2843 (2012).
38. Y. Pan, J. Zhan, H. Pan, W. Wang, G. Tang, L. Song and Y. Hu,ACS Sust. Chem. Eng., 4(3), 1431 (2016).
39. T.-T. Yang, J.-P. Guan, R.-C. Tang and G. Chen, Ind. Crops Prod.,115, 16 (2018).
40. J. Alongi, R. A. Carletto, A. Di Blasio, F. Carosio, F. Bosco and G.Malucelli, J. Mater. Chem. A, 1(15), 4779 (2013).
41. Z. U. Rehman, A. K. Niaz, J.-I. Song and B. H. Koo, Polymers, 13(2),303 (2021).
42. F. Carosio, G. Fontaine, J. Alongi and S. Bourbigot, ACS Appl. Mater.Interfaces, 7(22), 12158 (2015).
43. Z. Ur Rehman, M. Kaseem, D. G. Churchill, Y.-T. Pan and B. H.Koo, RSC Adv., 12(5), 2888 (2022).
44. F. Bosco, R. A. Carletto, J. Alongi, L. Marmo, A. Di Blasio and G.Malucelli, Carbohydr. Polym., 94(1), 372 (2013).
45. J. Alongi, R. A. Carletto, F. Bosco, F. Carosio, A. Di Blasio, F. Cuttica, V. Antonucci, M. Giordano and G. Malucelli, Polym. Degrad.Stabil., 99, 111 (2014).
46. S. Basak, K. K. Samanta, S. Saxena, S. Chattopadhyay, R. Narkar, R.Mahangade and G. Hadge, Polish J. Chem. Technol., 17(1), 123(2015).
47. Y. Luo, S. Wang, X. Du, Z. Du, X. Cheng and H. Wang, Cellulose,28(3), 1809 (2021).
48. I. van der Veen and J. de Boer, Chemosphere, 88(10), 1119 (2012).
49. A. Abou-Okeil, S. M. El-Sawy and F. A. Abdel-Mohdy, Carbohydr.Polym., 92(2), 2293 (2013).
50. F. Fang, X. Chen, X. Zhang, C. Cheng, D. Xiao, Y. Meng, X. Ding,H. Zhang and X. Tian, Prog. Org. Coat., 90, 258-266 (2016).
51. S. Li, X. Lin, Z. Li and X. Ren, Compos. Commun., 14, 15 (2019).
52. R. Lyon, R. Walters, S. Stoliarov and N. Safronava, https://www.fire.tc.faa.gov/pdf/tc20-35.pdf (2013).