Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 24, 2022
Revised December 6, 2022
Accepted December 16, 2022
- Acknowledgements
- Authors acknowledged the Deputy for Strengthening Research and Development, National Research and Innovation Agency, Indonesia for the financial support No: 187-08/UN7.6.1/PP/2021.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Synthesis of graphene-like material derived from biomass from agricultural waste and its application in Cu (II) removal
Abstract
The conversion of biomass from agricultural waste into valuable chemicals and materials is in the need,
considering the growing demand for chemicals and materials originating from renewable resources. In this paper the
feasibility of graphene-like materials preparation from biomass namely sugarcane bagasse, rice husk, coconut shell, and
sawdust using modified Hummers methods was investigated. The application of the graphene-like materials resulting
from the process in the Cu (II) removal via adsorption route was also studied. The characterization of samples shows
the materials produced from sugarcane bagasse and coconut shells depict the pattern of reduced graphene oxide (rGO),
while the materials derived from rise husk and sawdust follow the pattern of graphene. The synthesized graphene-like
materials later were used as an adsorbent for Cu (II) removal. The results shows that graphene-like materials from sugarcane bagasse and coconut shells give the highest adsorption reaction kinetics with 19.76 and 19.34 mg/g, respectively,
by following the second-order-pseudo model and the adsorption isotherm fitted the Langmuir model.
References
2. S. Z. N. Ahmad, W. N. Wan Salleh, A. F. Ismail, N. Yusof, M. Z.Mohd Yusop and F. Aziz, Chemosphere, 248, 126008 (2020).
3. A. Tomczyk, Z. Sokołowska and P. Boguta, Fuel, 278 (2020).
4. L. Chaabane, E. Beyou, A. El Ghali and M. H. V. Baouab, J. Hazard. Mater., 389, 121839 (2020).
5. M. Pishnamazi, S. Ghasemi, A. Khosravi, A. ZabihiSahebi, A. HasanZadeh and S. M. Borghei, J. Water Process Eng., 42 (2021).
6. N. K. Soliman and A. F. Moustafa, J. Mater. Res. Technol., 9, 10235(2020).
7. J. Guerrero-Contreras and F. Caballero-Briones, Mater. Chem. Phys.,153, 209 (2015).
8. Y. Seekaew, O. Arayawut, K. Timsorn and C. Wongchoosuk, Carbon-based nanofillers and their rubber nanocomposites, Elsevier,Inc., 259 (2019).
9. X. J. Lee, B. Y. Z. Hiew, K. C. Lai, L. Y. Lee, S. Gan, S. ThangalazhyGopakumar and S. Rigby, J. Taiwan Inst. Chem. Eng., 98, 163 (2019).
10. H. Muramatsu, Y. A. Kim, K.-S. Yang, R. Cruz-Silva, I. Toda, T.Yamada, M. Terrones, M. Endo, T. Hayashi and H. Saitoh, Small,
10 (2014).
11. Y. Li, Q. Du, T. Liu, X. Peng, J. Wang, J. Sun, Y. Wang, S. Wu, Z.Wang, Y. Xia and L. Xia, Chem. Eng. Res. Des., 91(2), 361 (2013).
12. T. F. Emiru and D. W. Ayele, Egyptian J. Basic Appl. Sci., 4(1), 74(2017).
13. A. Allahbakhsh F. Sharif S. Mazinani and M. R. Kalaee, Int. J. Nano Dimension, 5(1), 11 (2014).
14. E. H. Sujiono, Zurnansyah, D. Zabrian, M. Y. Dahlan, B. D. Amin,Samnur and J. Agus, Heliyon, 6(8), e04568 (2020).
15. F. Zulti, K. Dahlan and P. Sugita, Makara J. Sci., 16(3), 163 (2012).
16. B. Armynah, Atika, Z. Djafar, W. H. Piarah and D. Tahir, J. Phys.:Conf. Ser., 979 (2018).
17. W. Sudarsono, W. Y. Wong, K. S. Loh, E. H. Majlan, N. Syarif, K.-Y.Kok, R. M. Yunus and K. L. Lim, Int. J. Energy Res., 1 (2019).
18. M.A. Baqiya, A.Y. Nugraheni, W. Islamiyah, A.F. Kurniawan, M.M.Ramli, S. Yamaguchi, Y. Furukawa, S. Soontaranon, E. G. R. Putra,
Y. Cahyono, Risdiana and Darminto, Adv. Powder Technol., 31(5),2072 (2020).
19. F. Fahmi, N. A. A. Dewayanti, W. Widiyastuti and H. Setyawan,Null, 7(1), 1748962 (2020).
20. B. Li, X. Jin, J. Lin and Z. Chen, J. Clean. Prod., 189, 128 (2018).
21. G. Eda, J. Ball, C. Mattevi, M. Acik, L. Artiglia, G. Granozzi, Y. Chabal, T. D. Anthopoulos and M. Chhowalla, J. Mater. Chem., 21(30),11217 (2011).
22. X. Zhang, D. C. Zhang, Y. Chen, X. Z. Sun and Y. W. Ma, Chin. Sci.Bull., 57(23), 3045 (2012).
23. P. Singh, J. Bahadur and K. Pal, Graphene J., 6, 61 (2017).
24. K. R. Koch and P. F. Krause, J. Chem. Educ., 59(11), 973 (1982).
25. Y. Cao and X. Li, Adsorption, 20, 713 (2014).
26. W. Peng, H. Li, Y. Liu and S. Song, J. Mol. Liq., 230, 496 (2017).
27. W. Wu, Y. Yang and H. Zhou, Water, Air, & Soil Pollut., 224, 1372(2013).
28. T. D. Nguyen-Phan, V. H. Pham, E. W. Shin, H. D. Pham, S. Kim,J. S. Chung, E. J. Kim and S. H. Hur, Chem. Eng. J., 170(1), 226(2011).
29. A. Darmawan, L. Karlina, Y. Astuti, J. Motuzas, D. K. Wang and J. C. D. da Costa, J. Non-Cryst. Solids, 447, 9 (2016).
30. L. Chen, J. Yang, X. Zeng, L. Zhang and W. Yuan, Mater. Express,3, 4 (2013).
31. R. Wang, K. Shi, D. Huang, J. Zhang and S. An, Springer Nature, 9,18744 (2019).
32. X. Mi, G. Huang, W. Xie, W. Wang, Y. Liu and J. Gao, Carbon,50(13), 4856 (2012).
33. A. Saravanan, T. R. Sundararaman, S. Jeevanantham, S. Karishma,P. S. Kumar and P. R. Yaashikaa, Groundwater for Sust. Dev., 11,100460 (2020).
34. X. Wang, Y. Pei, M. Lu, X. Lu and X. Du, J. Mater. Sci., 50(5), 2113(2015).