Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 7, 2022
Revised August 23, 2022
Accepted September 15, 2022
- Acknowledgements
- his research was financially supported by the Open Foundation of State Key Laboratory of Mineral Processing (BGRIMMKJSKL-2022-12) and the Ph.D. start-up fund of Jiangsu University of Science and Technology (120140004) in China.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Mechanisms and kinetics of zinc and iron separation enhanced by calcified carbothermal reduction for electric arc furnace dust
Abstract
A high basicity charge prepared with electric arc furnace dust (EAFD), carbonaceous reducing agent and
CaO is proposed. The mechanisms of enhancing separation of zinc and iron by calcified carbothermic reduction of the
high basicity charge were analyzed by combining thermal analysis kinetics and experiment. The influences of roasting
temperature, carbon ratio (nc/no, molar ratio of carbon in graphitic carbon powder to oxygen in EAFD), and CaO dosage on phase transition and dezincification ratio in EAFD were investigated. The results show that the intermediates
Ca2Fe2O5 and Fe0.85xZnxO can be produced from the zinc-iron separation of zinc ferrate during the process of calcified
carbothermic reduction of EAFD. Addition of CaO and C results in the following transition pathways: ZnFe2O4+
CaOCa2Fe2O5+ZnOCa2Fe2O5+Zn(g)CaO+Fe; Fe0.85xZnxO+CaOCa2Fe2O5+FeO+ZnOCaO+Fe+Zn(g).
In the range of nc/no of 0.4-1.2 and roasting temperature of 1,000-1,100 o
C, the addition of CaO can promote reduction
and dezincification. Based on the Kissinger-Akahira-Sunose (KAS) and Coats-Redfern methods, the kinetic results
show that the calcified carbothermic reduction process can be divided into three stages: initial stage (=0-0.3), middle
stage (=0.3-0.45), and final stage (=0.45-1.0). The average activation energy of the initial stage is 305.01 kJ·mol1
,
and the reaction mechanism is one-dimensional diffusion. The average activation energy is 315.67 kJ·mol1
for the
middle stage and 288.22 kJ·mol1
for the final stage. The chemical reaction equation is found to be the most suitable
mechanism in the medium and final stages. It is also found that the addition of C
References
2. D. Z. Wang, D. Q. Zhu, J. Pan, Z. Q. Guo, H. Y. Tian and Y. X. Xue,J. Iron Steel Res. Int., 2, 1 (2022).
3. H. Berber, K. Tamm, M. Leinus, R. Kuusik, K. Tonsuaadu, P. Paaver and M. Uibu, Waste. Manag. Res., 38, 2 (2019).
4. P. J. W. K. D. Buzin, N. C. Heck and A. C. F. Vilela, J. Mater. Res.Technol., 6, 2 (2017).
5. C. Wang, Y. F. Guo, S. Wang, F. Chen, Y. J. Tan, F. Q. Zheng and L. Z. Yang, Int. J. Min. Met. Mater., 27, 26 (2020).
6. X. Cao, Z. G. Wen, X. L. Zhao, Y. H. Wang and H. R. Zhang, Sci.Total Environ., 717, 137114 (2020).
7. D. Z. Wang, D. Q. Zhu, J. Pan, Z. Q. Guo, C. C. Yang, X. Wang and T. Dong, JOM, 74, 2 (2022).
8. J. Q. Song, C. Peng, Y. J. Liang, D. K. Zhang, Z. Lin, Y. Liao and G. J. Wang, Hydrometallurgy, 202, 105599 (2021).
9. A. H. Mohammad, A. N. Jomana, A. O. Awni, A. H. Israa, A. J.Huda, A. Z. Mais and A. A Shaima, J. Environ. Chem. Eng., 7, 1(2018).
10. X. L. Lin, Z. W. Peng, J. X. Yan, Z. Z. Li, J. Y. Hwang, Y. B. Zhang,G. H. Li and T. Jiang, J. Clean. Prod., 149, 1079 (2017).
11. B. S. Kim, J. M. Yoo, J. T. Park and J. C. Lee, Mater. Trans., 47, 9(2006).
12. W. Lv, M. Gan, X. H. Fan, Z. Y. Ji and X. L. Chen, J. Mater. Res. Technol., 8, 6 (2019).
13. T. Guo, X. J. Hu, H. Matsuura, F. Tsukihashi and G. Z. Zhou, ISIJ Int., 50, 8 (2010).
14. M. H. Morcali, O. Yucel, A. Aydin and B. Derin, J. Min. Metall. B,48, 2 (2012).
15. Y. X. Zheng, J. Ning, W. Liu, P. J. Hu, J. F. Lu and J. Pang, Int. J. Min.Met. Mater., 28, 358 (2021).
16. S. Thomas, K. Bart, V. A. Karel and B. Bart, J. Clean. Prod., 65, 152(2014).
17. N. Tzouganatos, R. Matter, C. Wieckert, J. Antrekowitscn, M. Gamroth and A. Steinfeld, Jom-Us, 65, 12 (2013).
18. O. Mamdouh and F. Timo, Sep. Purif. Technol., 210, 867 (2018).
19. C. F. Romchat, I. Yosuke, U. Naoyoshi, I. Satoshi and N. Tetsuya,Int. J. Min. Met. Mater., 22, 8 (2015).
20. I. Satoshi, T. AKira, M. Y. Kazuyo, N. Kenichi and N. Tetsuya, ISIJ Int., 48, 10 (2008).
21. C. F. Romchat, M. Katsuya, M. Takahiro and N. Tetsuya, Hydrometallurgy, 159, 120 (2016).
22. M. Takahiro, C. F. Romchat, M. Katsuya and N. Tetsuya, J. Hazard. Mater., 302, 1 (2016).
23. H. E. Kissinger, Anal. Chem., 29, 11 (1957).
24. T. Ozawa, Thermochim. Acta, 203, 159 (1992).
25. J. H. Flynn, Thermochim. Acta, 203, 519 (1992).
26. A. W. Coats and J. P. Redfern, Nature, 201, 4914 (1964).
27. R. Z. Hu and Q. Z. Shi, Thermal analysis dynamics, Science Press.Publications, Beijing (2008).
28. G. Iwase and K. Okumura, ISIJ Int., 61, 10 (2021).
29. Y. Z. Liu, X. M. Lu, Z. X. You and X. W. Lu, Powder Technol., 362,C (2020).