Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 1, 2022
Revised September 11, 2022
Accepted October 17, 2022
- Acknowledgements
- We greatly appreciate the financial support from the projects of NSFC (No. 22106051) and Jilin Science and Technology Bureau (No. 20190104190, No.20190104189).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Highly efficient, durable and eco-friendly intumescent flame retardant for wool fabrics
Abstract
According to the requirements of flame retardant and environmental protection of wool fabrics, a phosphorus-nitrogen intumescent flame-retardant (IFR) system was constructed on the surface of wool fabrics based on
dip-rolling-drying process with DEA serving as carbonizing agent, phosphorous acid and phosphoric acid used as
acids, and urea serving as blowing agent. Ammonium N-ethoxy-n-methylene phosphonate-n-ethyl phosphate (ANPP)
was designed and the treated wool fabrics with a weight gain (WG) of 27.4% presented highly flame retardancy and
exhibited a high limiting oxygen index (LOI) of 37.8%; after 50 laundering cycles (LCs), LOI can still be remained at
30.5%. Self-extinguishing properties in the vertical combustion. The cone calorimeter (CONE) test verified that the
peak heat release rate (PHRR) of the untreated wool fabrics declined to 82.2 from 251.7 kW/m2
after ANPP treatment,
and the total heat release (THR) was reduced to 4.4 from 37.9 MJ/m2
. In addition, the physical properties were maintained in the usable range. The flame-retardant mechanism analysis showed that the dense phosphorus-nitrogen char
layer shaped effectively prevented the release of heat and spread of flammable volatile substances in the condensed
phase. This study supplies novel ideas on devising and manufacturing of environmentally friendly treated wool fabrics
with superior flame retardancy, durability, and high efficiency
References
2. P. Zhu and G. Sun, J. Appl. Polym. Sci., 93, 1037 (2004).
3. Q. H. Zhang, W. Zhang, J. Y. Huang, Y. K. Lai, T. L. Xing, G. Q.Chen, W. R. Jin, H. Z. Liu and B. Sun, Mater. Des., 85, 796 (2015).
4. R. V. Khose, D. A. Pethsangave, P. H. Wadekar, A. K. Ray and S.Some, Carbon, 139, 205 (2018).
5. L. S. Birnbaum and D. F. Staskal, Environ. Health Perspect, 112, 9(2004).
6. J. F. Li, W. Jiang and M. L. Liu, Cellulose, 29, 4725 (2022).
7. K. C. Patankar, S. Maiti, G. P. Singh, M. Shahid, S. More and R. V.Adivarekar, Clean. Eng. Technol., 5, 100319 (2021).
8. L. Benisek and W. A. Phillips, J. Fire Sci., 1, 418 (1983).
9. S. Basak, K. K. Samanta, S. K. Chattopadhyaya, P. Pandit and S.Maiti, Color. Technol., 132, 135 (2016).
10. P. J. Davies, A. R. Horrocks and M. Miraftab, Polym. Int., 49, 1125(2000).
11. A. R. Horrocks and S. Zhang, Text. Res. J., 74, 433 (2004).
12. X. W. Cheng, J. P. Guan and X. H. Yang, J. Clean. Prod., 223, 342(2019).
13. X. W. Cheng, J. P. Guan and X. H. Yang, Thermochim. Acta, 665, 28(2018).
14. P. Mathur, J. N. Sheikh and K. Sen, Polym. Degrad. Stabil., 174,109101 (2020).
15. Z. Zhou, W. R. Bao, Y. B. Di and J. M. Dai, Fiber Polym., 16, 560(2015).
16. J. F. Li and W. Jiang, Ind. Crop Prod., 174, 114205 (2021).
17. D. A. Pethsangave, R. V. Khose, P. H. Wadekar and S. Some, ACS Appl. Mater. Interfaces, 9, 35319 (2017).
18. D. A. Pethsangave, R. V. Khose, P. H. Wadekar and S. Some, ACS Sustain. Chem. Eng., 7, 11745 (2019).
19. F. Razmjooei, K. P. Singh, E. J. Bae and J. S. Yu, J. Mater. Chem., 3,11031 (2015).
20. X. Y. Guo, Y. Miao, P. P. Ye, Y. Wen and H. F. Yang, Mater. Res.Express, 1, 025403 (2014).
21. W. W. Gao, G. X. Zhang and F. X. Zhang, Cellulose, 22, 2787 (2015).
22. H. L. Liu and W. D. Yu, J. Appl. Polym. Sci., 103, 1 (2007).
23. A. A. Farag, Spectrochim. Acta Mol. Biomol. Spectrosc., 65, 667(2006).
24. Y. L. Jia, Y. W. Hu, D. D. Zheng, G. X. Zhang, F. X. Zhang and Y. J.Liang, Cellulose, 24, 1159 (2016).
25. D. D. Zheng, J. F. Zhou, Y. Wang, F. X. Zhang and G. X. Zhang, Cellulose, 25, 787 (2017).
26. O. Kareb, A. Gomaa, C. P. Champagne, J. Jean and M. Aider, Food Chem., 221, 590 (2017).
27. M. S. Khalil-Abad, M. E. Yazdanshenas and M. R. Nateghi, Cellulose, 16, 1147 (2009).
28. S. C. Chang, B. Condon, E. Graves, M. Uchimiya, C. Fortier, M.Easson and P. Wakelyn, Fibers Polym., 12, 334 (2011).
29. X. H. Li, H. Y. Chen, W. T. Wang, Y. Q. Liu and P. H. Zhao, Polym.Degrad. Stabil., 120, 193 (2015).
30. A. Nallathambi and R. G. D. Venkateshwarapuram, Carbohydr.Polym., 152, 1 (2016).
31. H. Vahabi, B. K. Kandola and M. R. Saeb, Polymers, 11, 407 (2019).
32. M. S. Liu, S. Huang, G. X. Zhang and F. X. Zhang, Cellulose, 26,7553 (2019).
33. P. Zhao, W. H. Rao, H. Q. Luo, L. Wang, Y. L. Liu and C. B. Yu,Mater. Des., 193, 108838 (2020).
34. W. T. He, P. G. Song, B. Yu, Z. P. Fang and H. Wang, Prog. Mater.Sci., 114, 100687 (2020).
35. Y. S. Liu, Y. B. Guo, Y. L. Ren, Y. Wang, X. Guo and X. H. Liu,Polym. Degrad. Stabil., 179, 109286 (2020).
36. X. W. Cheng, R. C. Tang, F. Yao and X. H. Yang, Prog. Org. Coat.,132, 336 (2019).
37. W. Jiang, J. F. Li, Z. Y. Li, X. Y. Zhang, F. L. Jin and S. J. Park, Korean J. Chem. Eng., 38, 872 (2021).
38. E. Kaynak, M. E. Ureyen and A. S. Koparal, Mater. Today: Proceedings, 31, S258 (2020).
39. X. W. Cheng, J. P. Guan, G. Q. Chen, X. H. Yang and R. C. Tang,Polymers, 8, 122 (2016).
40. R. Zhang, X. F. Xiao, Q. L. Tai, H. Huang and Y. Hu, Polym. Eng.Sci., 52, 2620 (2012).
41. F. Carosio, J. Alongi and G. Malucelli, Polym. Degrad. Stabil., 98,1626 (2013).
42. M. Forouharshad, M. Montazer, M. B. Moghadam and O. Saligheh,Thermochim. Acta, 520, 134 (2011).
43. C. M. Tian, Z. Li and H. Z. Guo, J. Fire Sci., 21, 155 (2003).
44. A. R. Horrocks and P. J. Davies, Fire Mater., 24, 151 (2000).
45. C. Colleoni, I. Donelli, G. Freddi, E. Guido, V. Migani and G.Rosace, Surf. Coating. Technol., 235, 192 (2013).
46. Y. L. Ren, Y. T. Gu, Q. Zeng and Y. Zhang, Eur. Polym. J., 94, 1 (2017).
47. A. Taherkhani and M. Hasanzadeh, Mater. Chem. Phys., 219, 425 (2018).
48. X. Zhou, S. L. Qiu, W. Cai, L. X. Liu, Y. B. Hou, W. Wang, L. Song,X. Wang and Y. Hu, Chem. Eng. J., 369, 451 (2019).
49. W. W. Guo, B. Yu, Y. Yuan, L. Song and Y. Hu, Compos. Part B:Eng., 123, 154 (2017).
50. L. Chen and Y. Z. Wang, Polym. Adv. Technol., 21, 1 (2010).
51. J. L. Wang, D. C. Zhang, Y. Zhang, W. Cai, C. X. Yao, Y. Hu and W. Z. Hu, J. Hazard. Mater., 362, 482 (2019).
52. X. Zhou, S. L. Qiu, W. Y. Xing, C. S. R. Gangireddy, Z. Gui and Y.Hu, ACS Appl. Mater. Interfaces, 9, 29147 (2017).
53. Y. Q. Shi, B. Yu, Y. Y. Zheng, J. Yang, Z. P. Duan and Y. Hu, J. Colloid Interface Sci., 521, 160 (2018).
54. L. J. Duan, H. Y. Yang, L. Song, Y. B. Hou, W. Wang, Z. Gui and Y.Hu, Polym. Degrad. Stabil., 134, 179 (2016).
55. J. Gorham, J. Torres, G. Wolfe, A. d’Agostino and D. H. Fairbrother,J. Phys. Chem. B, 109, 20379 (2005)