ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 1, 2022
Revised September 11, 2022
Accepted October 17, 2022
Acknowledgements
We greatly appreciate the financial support from the projects of NSFC (No. 22106051) and Jilin Science and Technology Bureau (No. 20190104190, No.20190104189).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Highly efficient, durable and eco-friendly intumescent flame retardant for wool fabrics

1Centre of Analysis and Measurement, Jilin Institute of Chemical Technology, Jilin 132022, China 2School of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
2312329010@qq.com
Korean Journal of Chemical Engineering, April 2023, 40(4), 999-1013(15), 10.1007/s11814-022-1318-6
downloadDownload PDF

Abstract

According to the requirements of flame retardant and environmental protection of wool fabrics, a phosphorus-nitrogen intumescent flame-retardant (IFR) system was constructed on the surface of wool fabrics based on dip-rolling-drying process with DEA serving as carbonizing agent, phosphorous acid and phosphoric acid used as acids, and urea serving as blowing agent. Ammonium N-ethoxy-n-methylene phosphonate-n-ethyl phosphate (ANPP) was designed and the treated wool fabrics with a weight gain (WG) of 27.4% presented highly flame retardancy and exhibited a high limiting oxygen index (LOI) of 37.8%; after 50 laundering cycles (LCs), LOI can still be remained at 30.5%. Self-extinguishing properties in the vertical combustion. The cone calorimeter (CONE) test verified that the peak heat release rate (PHRR) of the untreated wool fabrics declined to 82.2 from 251.7 kW/m2 after ANPP treatment, and the total heat release (THR) was reduced to 4.4 from 37.9 MJ/m2 . In addition, the physical properties were maintained in the usable range. The flame-retardant mechanism analysis showed that the dense phosphorus-nitrogen char layer shaped effectively prevented the release of heat and spread of flammable volatile substances in the condensed phase. This study supplies novel ideas on devising and manufacturing of environmentally friendly treated wool fabrics with superior flame retardancy, durability, and high efficiency

References

1. J. M. Cardamone, Handbook of fire resistant textiles, Woodhead Publishing Limited, Cambridge, 245 (2013).
2. P. Zhu and G. Sun, J. Appl. Polym. Sci., 93, 1037 (2004).
3. Q. H. Zhang, W. Zhang, J. Y. Huang, Y. K. Lai, T. L. Xing, G. Q.Chen, W. R. Jin, H. Z. Liu and B. Sun, Mater. Des., 85, 796 (2015).
4. R. V. Khose, D. A. Pethsangave, P. H. Wadekar, A. K. Ray and S.Some, Carbon, 139, 205 (2018).
5. L. S. Birnbaum and D. F. Staskal, Environ. Health Perspect, 112, 9(2004).
6. J. F. Li, W. Jiang and M. L. Liu, Cellulose, 29, 4725 (2022).
7. K. C. Patankar, S. Maiti, G. P. Singh, M. Shahid, S. More and R. V.Adivarekar, Clean. Eng. Technol., 5, 100319 (2021).
8. L. Benisek and W. A. Phillips, J. Fire Sci., 1, 418 (1983).
9. S. Basak, K. K. Samanta, S. K. Chattopadhyaya, P. Pandit and S.Maiti, Color. Technol., 132, 135 (2016).
10. P. J. Davies, A. R. Horrocks and M. Miraftab, Polym. Int., 49, 1125(2000).
11. A. R. Horrocks and S. Zhang, Text. Res. J., 74, 433 (2004).
12. X. W. Cheng, J. P. Guan and X. H. Yang, J. Clean. Prod., 223, 342(2019).
13. X. W. Cheng, J. P. Guan and X. H. Yang, Thermochim. Acta, 665, 28(2018).
14. P. Mathur, J. N. Sheikh and K. Sen, Polym. Degrad. Stabil., 174,109101 (2020).
15. Z. Zhou, W. R. Bao, Y. B. Di and J. M. Dai, Fiber Polym., 16, 560(2015).
16. J. F. Li and W. Jiang, Ind. Crop Prod., 174, 114205 (2021).
17. D. A. Pethsangave, R. V. Khose, P. H. Wadekar and S. Some, ACS Appl. Mater. Interfaces, 9, 35319 (2017).
18. D. A. Pethsangave, R. V. Khose, P. H. Wadekar and S. Some, ACS Sustain. Chem. Eng., 7, 11745 (2019).
19. F. Razmjooei, K. P. Singh, E. J. Bae and J. S. Yu, J. Mater. Chem., 3,11031 (2015).
20. X. Y. Guo, Y. Miao, P. P. Ye, Y. Wen and H. F. Yang, Mater. Res.Express, 1, 025403 (2014).
21. W. W. Gao, G. X. Zhang and F. X. Zhang, Cellulose, 22, 2787 (2015).
22. H. L. Liu and W. D. Yu, J. Appl. Polym. Sci., 103, 1 (2007).
23. A. A. Farag, Spectrochim. Acta Mol. Biomol. Spectrosc., 65, 667(2006).
24. Y. L. Jia, Y. W. Hu, D. D. Zheng, G. X. Zhang, F. X. Zhang and Y. J.Liang, Cellulose, 24, 1159 (2016).
25. D. D. Zheng, J. F. Zhou, Y. Wang, F. X. Zhang and G. X. Zhang, Cellulose, 25, 787 (2017).
26. O. Kareb, A. Gomaa, C. P. Champagne, J. Jean and M. Aider, Food Chem., 221, 590 (2017).
27. M. S. Khalil-Abad, M. E. Yazdanshenas and M. R. Nateghi, Cellulose, 16, 1147 (2009).
28. S. C. Chang, B. Condon, E. Graves, M. Uchimiya, C. Fortier, M.Easson and P. Wakelyn, Fibers Polym., 12, 334 (2011).
29. X. H. Li, H. Y. Chen, W. T. Wang, Y. Q. Liu and P. H. Zhao, Polym.Degrad. Stabil., 120, 193 (2015).
30. A. Nallathambi and R. G. D. Venkateshwarapuram, Carbohydr.Polym., 152, 1 (2016).
31. H. Vahabi, B. K. Kandola and M. R. Saeb, Polymers, 11, 407 (2019).
32. M. S. Liu, S. Huang, G. X. Zhang and F. X. Zhang, Cellulose, 26,7553 (2019).
33. P. Zhao, W. H. Rao, H. Q. Luo, L. Wang, Y. L. Liu and C. B. Yu,Mater. Des., 193, 108838 (2020).
34. W. T. He, P. G. Song, B. Yu, Z. P. Fang and H. Wang, Prog. Mater.Sci., 114, 100687 (2020).
35. Y. S. Liu, Y. B. Guo, Y. L. Ren, Y. Wang, X. Guo and X. H. Liu,Polym. Degrad. Stabil., 179, 109286 (2020).
36. X. W. Cheng, R. C. Tang, F. Yao and X. H. Yang, Prog. Org. Coat.,132, 336 (2019).
37. W. Jiang, J. F. Li, Z. Y. Li, X. Y. Zhang, F. L. Jin and S. J. Park, Korean J. Chem. Eng., 38, 872 (2021).
38. E. Kaynak, M. E. Ureyen and A. S. Koparal, Mater. Today: Proceedings, 31, S258 (2020).
39. X. W. Cheng, J. P. Guan, G. Q. Chen, X. H. Yang and R. C. Tang,Polymers, 8, 122 (2016).
40. R. Zhang, X. F. Xiao, Q. L. Tai, H. Huang and Y. Hu, Polym. Eng.Sci., 52, 2620 (2012).
41. F. Carosio, J. Alongi and G. Malucelli, Polym. Degrad. Stabil., 98,1626 (2013).
42. M. Forouharshad, M. Montazer, M. B. Moghadam and O. Saligheh,Thermochim. Acta, 520, 134 (2011).
43. C. M. Tian, Z. Li and H. Z. Guo, J. Fire Sci., 21, 155 (2003).
44. A. R. Horrocks and P. J. Davies, Fire Mater., 24, 151 (2000).
45. C. Colleoni, I. Donelli, G. Freddi, E. Guido, V. Migani and G.Rosace, Surf. Coating. Technol., 235, 192 (2013).
46. Y. L. Ren, Y. T. Gu, Q. Zeng and Y. Zhang, Eur. Polym. J., 94, 1 (2017).
47. A. Taherkhani and M. Hasanzadeh, Mater. Chem. Phys., 219, 425 (2018).
48. X. Zhou, S. L. Qiu, W. Cai, L. X. Liu, Y. B. Hou, W. Wang, L. Song,X. Wang and Y. Hu, Chem. Eng. J., 369, 451 (2019).
49. W. W. Guo, B. Yu, Y. Yuan, L. Song and Y. Hu, Compos. Part B:Eng., 123, 154 (2017).
50. L. Chen and Y. Z. Wang, Polym. Adv. Technol., 21, 1 (2010).
51. J. L. Wang, D. C. Zhang, Y. Zhang, W. Cai, C. X. Yao, Y. Hu and W. Z. Hu, J. Hazard. Mater., 362, 482 (2019).
52. X. Zhou, S. L. Qiu, W. Y. Xing, C. S. R. Gangireddy, Z. Gui and Y.Hu, ACS Appl. Mater. Interfaces, 9, 29147 (2017).
53. Y. Q. Shi, B. Yu, Y. Y. Zheng, J. Yang, Z. P. Duan and Y. Hu, J. Colloid Interface Sci., 521, 160 (2018).
54. L. J. Duan, H. Y. Yang, L. Song, Y. B. Hou, W. Wang, Z. Gui and Y.Hu, Polym. Degrad. Stabil., 134, 179 (2016).
55. J. Gorham, J. Torres, G. Wolfe, A. d’Agostino and D. H. Fairbrother,J. Phys. Chem. B, 109, 20379 (2005)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로