ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 28, 2022
Revised October 31, 2022
Accepted November 6, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Soft sensor development based on just-in-time learning and dynamic time warping for multi-grade processes

School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea
jongmin@snu.ac.kr
Korean Journal of Chemical Engineering, May 2023, 40(5), 1023-1036(14), 10.1007/s11814-022-1335-5
downloadDownload PDF

Abstract

This study presents the development of soft sensors based on just-in-time learning (JITL) and dynamic time warping (DTW) for online quality prediction in multi-grade processes. Most industrial chemical processes are multi-grade processes that produce multiple products with distinct properties. Multi-grade processes, however, are difficult to monitor and control due to frequent process transitions and abrupt changes in operating conditions. The DTWbased JITL soft sensor modeling approach is proposed as a solution to the complexity of multi-grade process modeling. In the JITL modeling approach, a local model is trained online using historical samples that are similar to the query sample, allowing the model to account for multi-grade characteristics and process drifts. To account for process dynamics and temporal correlations, the suggested approach utilizes a data sequence as an input rather than a single data point. DTW calculates the similarity of data sequences by stretching the sequences to determine an optimal warping path. Additionally, sensitivity analyses of model hyperparameters are performed and a cross-correlation-based hyperparameter optimization approach is proposed. The advantages of the proposed approach are verified via multi-grade simulation studies. As a result, the proposed model outperforms a conventional JITL model based on the Euclidean distance.

References

1. M. Ohshima and M. Tanigaki, J. Process Control, 10, 135 (2000).
2. Y. Liu and J. Chen, J. Process Control, 23, 793 (2013).
3. Y. Liu, Z. Gao and J. Chen, Chem. Eng. Sci., 102, 602 (2013).
4. M. Kim, Y. H. Han, I. S. Han and C. Han, Ind. Eng. Chem. Res., 44,334 (2005).
5. R. Sharmin, U. Sundararaj, S. Shah, L. V. Griend and Y. J. Sun,Chem. Eng. Sci., 61, 6372 (2006).
6. J. Liu, Control Eng. Pract., 15, 769 (2007).
7. P. Kadlec, R. Grbic and B. Gabrys, Comput. Chem. Eng., 35, 1(2011).
8. S.J. Qin, H. Yue and R. Dunia, Ind. Eng. Chem. Res., 36, 1675 (1997).
9. Z. Ge, Control Eng. Pract., 31, 9 (2014).
10. M. K. Hartnett, G. Lightbody and G. W. Irwin, Chemom. Intell.Lab. Syst., 40, 215 (1998).
11. J. Yu, Ind. Eng. Chem. Res., 51, 13227 (2012).
12. W. Shao and X. Tian, Chem. Eng. Res. Des., 95, 113 (2015).
13. Y. Matsuyama, S. Kim and S. Hasebe, Comput. Chem. Eng., 146,107224 (2021).
14. S. Park and C. Han, Comput. Chem. Eng., 24, 871 (2000).
15. I.S. Han, C. Han and C.B. Chung, J. Appl. Polym. Sci., 95, 967 (2005).
16. T. C. Park, T. Y. Kim and Y. K. Yeo, Korean J. Chem. Eng., 27, 1662(2010).
17. H. Jin, X. Chen, J. Yang, H. Zhang, L. Wang and L. Wu, Chem. Eng.Sci., 131, 282 (2015).
18. J. Yu, Chem. Eng. Sci., 82, 22 (2012).
19. R. Grbić, D. Slišković and P. Kadlec, Comput. Chem. Eng., 58, 84(2013).
20. Y. Liu, T. Chen and J. Chen, Ind. Eng. Chem. Res., 54, 5037 (2015).
21. J. C. B. Gonzaga, L. A. C. Meleiro, C. Kiang and R. Maciel Filho,Comput. Chem. Eng., 33, 43 (2009).
22. A. J. De Assis and R. Maciel Filho, Comput. Chem. Eng., 24, 1099(2000).
23. X. Yuan and Y. Wang, IEEE Trans. Industr. Inform., 16, 3168 (2019).
24. X. Yuan, L. Li, Y. A. W. Shardt, Y. Wang and C. Yang, IEEE Trans.Ind. Electron., 68, 4404 (2021).
25. W. Li, H. H. Yue, S. Valle-Cervantes and S. J. Qin, J. Process Control, 10, 471 (2000).
26. H. D. Jin, Y. H. Lee, G. Lee and C. Han, Ind. Eng. Chem. Res., 45,696 (2006).
27. X. Wang, U. Kruger and G. W. Irwin, Ind. Eng. Chem. Res., 44, 5691(2005).
28. S. J. Qin, Comput. Chem. Eng., 22, 503 (1998).
29. B. S. Dayal and J. F. MacGregor, J. Process Control, 7, 169 (1997).
30. F. Ahmed, S. Nazir and Y. K. Yeo, Korean J. Chem. Eng., 26, 14(2009).
31. L. Xie, J. Zeng and C. Gao, IEEE Trans. Control Syst. Technol., 22,360 (2014).
32. Y. Liu, Z. Gao, P. Li and H. Wang, Ind. Eng. Chem. Res., 51, 4313(2012).
33. K. Yang, H. Jin, X. Chen, J. Dai, L. Wang and D. Zhang, Chemom.Intell. Lab. Syst., 155, 170 (2016).
34. X. Yuan, J. Zhou, Y. Wang and C. Yang, J. Chemom., 32, e3040(2018).
35. X. Yuan, Z. Ge, B. Huang, Z. Song and Y. Wang, IEEE Trans. Industr.Inform., 13, 532 (2017).
36. F. Guo, W. Bai and B. Huang, J. Process Control, 92, 90 (2020).37. H. Kaneko and K. Funatsu, AIChE J., 62, 717 (2016).
38. J. Liu, T. Liu and J. Chen, Chem. Eng. Sci., 191, 31 (2018).
39. J. Liu, J. Hou and J. Chem, Comput. Chem. Eng., 154, 107469 (2021).
40. Y. Liu and Z. Gao, J. Appl. Polym. Sci., 132, 41958 (2015).
41. Y. Liu, Y. Liang and Z. Gao, J. Appl. Polym. Sci., 134, 45094 (2017).
42. J. Wang, K. Qiu, R. Wang, X. Zhou and Y. Guo, IEEE Trans.Instrum. Meas., 70, 1 (2021).
43. J. Zheng, F. Shen and L. Ye, IEEE Access, 9, 72172 (2021).
44. Y. Wu, D. Liu, X. Yuan and Y. Wang, IEEE Sens., 21, 3497 (2021).
45. F. Guo and B. Huang, Chemom. Intell. Lab. Syst., 204, 104118 (2020).
46. F. Guo, B. Wei and B. Huang, Comput. Chem. Eng., 146, 107230(2021).
47. H. Sakoe and S. Chiba, IEEE Trans. Acoust. Speech Signal Process.,26, 43 (1978).
48. H. Ding, G. Trajcevski, P. Scheuermann, X. Wang and E. J. Keogh,Proc. VLDB Endow., 1, 1542 (2008).
49. A. Kholmatov and B. Yanikoglu, Pattern Recognit. Lett., 26, 2400(2005).
50. N. Gillian, R. B. Knapp and S. O’Modhrain, in Proc. of the 11th International Conference on New Interfaces for Musical Expression, 337(2011).
51. X. Meng, H. Fu, L. Peng, G. Liu, Y. Yu, Z. Wang and E. Chen, IEEETrans. Intell. Trasp. Syst., 23, 2021 (2022).
52. K. Q. Zhou, Y. Qin, B. P. L. Lau, C. Yuen and S. Adams, in IECON2021-47th Annual Conference of the IEEE Industrial Electronics Society (2021).
53. Y. Si, Z. Chen, J. Sun, D. Zhang and P. Qian, IEEE Access, 8, 108359(2020).
54. A. Kassidas, J. F. MacGregor and P. A. Taylor, AIChE J., 44, 864(1998).
55. W. Ku, R. H. Storer and C. Georgakis, Chemom. Intell. Lab. Syst.,30, 179 (1995).
56. S. Heo and J. H. Lee, IFAC-PapersOnLine, 51, 470 (2018).
57. E. P. Nahas, M. A. Henson and D. E. Seborg, Comput. Chem. Eng.,16, 1039 (1992).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로