Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 20, 2022
Revised October 10, 2022
- Acknowledgements
- This research was supported by the 2022 scientific promotion program funded by Jeju National University
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Onset and growth of gravitational instability in an isolated porous medium: Linear and nonlinear analyses
Abstract
Linear and nonlinear analyses were conducted to study the onset and growth of gravitational instability in
an isolated porous medium. By considering the dissolution capacity of the isolated system, base concentration profiles
were obtained analytically. Based on this base concentration field, linear stability equations were derived under the linear stability theory. The present stability analysis predicts that an isolated system is more stable than the conventional
open system. In addition, the dissolution capacity of the isolated system suppresses the onset of instability. Unlike the
previous study, the minimum Darcy-Rayleigh number to induce gravitational instability exists and it is a strong function of the dissolution capacity. However, the critical conditions for the high Darcy-Rayleigh number system are insensitive to the dissolution capacity. Based on the results of the linear analysis and the analytically obtained base concentration
profile, fully nonlinear numerical simulations were also conducted for the case of Ra=103
. The vertical development of
the instability motion and the dissolution flux are significantly suppressed in the high dissolution capacity systems.
Keywords
References
2. C. W. Horton and F. T. Rogers, J. Appl. Phys., 16, 367 (1945)
3. E. R. Lapwood, Proc. Camb. Phil. Soc., 44, 508 (1948).
4. E. Lindberg and D. Wessel-Berg, Energy Convers. Manage., 38, S229(1997).
5. J.-P. Caltagirone, Quart. J. Mech. Appl. Math., 33, 47 (1980).
6. J. Ennis-King, I. Preston and L. Paterson, Phys. Fluids, 17, 084107(2005).
7. A. Riaz, M. Hesse, H. A. Tchelepi and F. M. Orr, J. Fluid Mech., 548,87 (2006).
8. A. Selim and D. A. S. Rees, J. Porous Media, 10, 1 (2007).
9. M. C. Kim and C. K. Choi, Phys. Fluids, 24, 044102 (2012).
10. H. Emami-Meybodi, Phys. Fluids, 29, 014102 (2017).
11. A. Selim and D. A. S Rees, J. Porous Media, 10, 17 (2007).
12. A. Selim and D. A. S Rees, J. Porous Media, 13, 1039 (2010).
13. A. C. Slim, J. Fluid Mech., 741, 461 (2014).
14. H. Hassanzadeh M. Pooladi-Darvish and D. W. Keith, AIChE J.,53, 1121 (2007).
15. G. S. H. Pau, J. B. Bell, K. Pruess, A. S. Almgren, M. J. Lijewski and K. Zhang, Adv. Water Resour., 33, 443 (2010).
16. Q. Meng and X. Jiang, Appl. Energy, 130, 581 (2014).
17. D. Daniel, N. Tilton and A. Riaz, J. Fluid Mech., 727, 456 (2013).
18. M. C. Kim, Chem. Eng. Sci., 98, 255 (2013).
19. P. C. Myint and A. Firoozabadi, Phys. Fluids, 25, 094105 (2013).
20. M. C. Kim, Int. J. Heat Mass Transfer, 100, 779 (2016).
21. D. Akhbari and M. A. Hesse, Geology, 45, 47 (2017).
22. B. Wen, D. Ahkbari, L. Zhang and M. A. Hesse, J. Fluid Mech., 854,56 (2018).
23. L. Vo and L. Hadji, Phys. Fluids, 29, 127101 (2017).
24. R. E. Plevan and J. A. Quinn, AIChE J., 12, 894 (1966).
25. M. C. Kim, D. Y. Yoon and C. K. Choi, Ind. Eng. Chem. Res., 45,7321 (2006).
26. L. Rongy, K. G. Haugen and A. Firoozabadi, AIChE J., 58, 1336(2012).
27. A. C. Slim, M. M. Bandi, J. C. Miller and L. Mahadevan, Phys. Fluids, 25, 024101 (2013).
28. M. C. Kim and C. K. Choi, Korean J. Chem. Eng., 32, 2400 (2015).
29. M. C. Kim, Korean J. Chem. Eng., 35, 364 (2018).
30. M. C. Kim, Korean Chem. Eng. Res., 59, 138 (2021).
31. M. C. Kim, Korean J. Chem. Eng., 39, 548 (2022).
32. J. T. H. Andres and S. S. S. Cardoso, Chaos, 22, 037113 (2012).
33. Z. Shi, B. Wen, M. A. Hesse, T. T. Tsotsis abd K. Jessen, Adv. Water Resour., 113, 100 (2018).
34. B. Wen and M. A. Hesse, Rayleigh fractionation in high-Rayleighnumber solutal convection in porous media, https://arxiv.org/abs/
1801.03075.