ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 20, 2022
Revised October 10, 2022
Acknowledgements
This research was supported by the 2022 scientific promotion program funded by Jeju National University
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Onset and growth of gravitational instability in an isolated porous medium: Linear and nonlinear analyses

Department of Chemical Engineering, Jeju National University, Jeju 63243, Korea
mckim@cheju.ac.kr
Korean Journal of Chemical Engineering, May 2023, 40(5), 1045-1054(10), 10.1007/s11814-022-1315-9
downloadDownload PDF

Abstract

Linear and nonlinear analyses were conducted to study the onset and growth of gravitational instability in an isolated porous medium. By considering the dissolution capacity of the isolated system, base concentration profiles were obtained analytically. Based on this base concentration field, linear stability equations were derived under the linear stability theory. The present stability analysis predicts that an isolated system is more stable than the conventional open system. In addition, the dissolution capacity of the isolated system suppresses the onset of instability. Unlike the previous study, the minimum Darcy-Rayleigh number to induce gravitational instability exists and it is a strong function of the dissolution capacity. However, the critical conditions for the high Darcy-Rayleigh number system are insensitive to the dissolution capacity. Based on the results of the linear analysis and the analytically obtained base concentration profile, fully nonlinear numerical simulations were also conducted for the case of Ra=103 . The vertical development of the instability motion and the dissolution flux are significantly suppressed in the high dissolution capacity systems.

References

1. B. Metz, O. Davidson, H. C. de Coninck, M. Loos and L. A. Meyer,IPCC special report on carbon dioxide capture and storage, Cambridge University Press, Cambridge, U.K. (2005).
2. C. W. Horton and F. T. Rogers, J. Appl. Phys., 16, 367 (1945)
3. E. R. Lapwood, Proc. Camb. Phil. Soc., 44, 508 (1948).
4. E. Lindberg and D. Wessel-Berg, Energy Convers. Manage., 38, S229(1997).
5. J.-P. Caltagirone, Quart. J. Mech. Appl. Math., 33, 47 (1980).
6. J. Ennis-King, I. Preston and L. Paterson, Phys. Fluids, 17, 084107(2005).
7. A. Riaz, M. Hesse, H. A. Tchelepi and F. M. Orr, J. Fluid Mech., 548,87 (2006).
8. A. Selim and D. A. S. Rees, J. Porous Media, 10, 1 (2007).
9. M. C. Kim and C. K. Choi, Phys. Fluids, 24, 044102 (2012).
10. H. Emami-Meybodi, Phys. Fluids, 29, 014102 (2017).
11. A. Selim and D. A. S Rees, J. Porous Media, 10, 17 (2007).
12. A. Selim and D. A. S Rees, J. Porous Media, 13, 1039 (2010).
13. A. C. Slim, J. Fluid Mech., 741, 461 (2014).
14. H. Hassanzadeh M. Pooladi-Darvish and D. W. Keith, AIChE J.,53, 1121 (2007).
15. G. S. H. Pau, J. B. Bell, K. Pruess, A. S. Almgren, M. J. Lijewski and K. Zhang, Adv. Water Resour., 33, 443 (2010).
16. Q. Meng and X. Jiang, Appl. Energy, 130, 581 (2014).
17. D. Daniel, N. Tilton and A. Riaz, J. Fluid Mech., 727, 456 (2013).
18. M. C. Kim, Chem. Eng. Sci., 98, 255 (2013).
19. P. C. Myint and A. Firoozabadi, Phys. Fluids, 25, 094105 (2013).
20. M. C. Kim, Int. J. Heat Mass Transfer, 100, 779 (2016).
21. D. Akhbari and M. A. Hesse, Geology, 45, 47 (2017).
22. B. Wen, D. Ahkbari, L. Zhang and M. A. Hesse, J. Fluid Mech., 854,56 (2018).
23. L. Vo and L. Hadji, Phys. Fluids, 29, 127101 (2017).
24. R. E. Plevan and J. A. Quinn, AIChE J., 12, 894 (1966).
25. M. C. Kim, D. Y. Yoon and C. K. Choi, Ind. Eng. Chem. Res., 45,7321 (2006).
26. L. Rongy, K. G. Haugen and A. Firoozabadi, AIChE J., 58, 1336(2012).
27. A. C. Slim, M. M. Bandi, J. C. Miller and L. Mahadevan, Phys. Fluids, 25, 024101 (2013).
28. M. C. Kim and C. K. Choi, Korean J. Chem. Eng., 32, 2400 (2015).
29. M. C. Kim, Korean J. Chem. Eng., 35, 364 (2018).
30. M. C. Kim, Korean Chem. Eng. Res., 59, 138 (2021).
31. M. C. Kim, Korean J. Chem. Eng., 39, 548 (2022).
32. J. T. H. Andres and S. S. S. Cardoso, Chaos, 22, 037113 (2012).
33. Z. Shi, B. Wen, M. A. Hesse, T. T. Tsotsis abd K. Jessen, Adv. Water Resour., 113, 100 (2018).
34. B. Wen and M. A. Hesse, Rayleigh fractionation in high-Rayleighnumber solutal convection in porous media, https://arxiv.org/abs/
1801.03075.

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로