Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 27, 2022
Revised December 21, 2022
Accepted January 31, 2023
- Acknowledgements
- This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2019R1A2C2088174), the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (20212010100040) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF2021R1A5A1084921).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Enhanced catalytic complete oxidation of 1,2-dichloroethane to CO2 over the Al-based oxide supported CuClx composite catalysts
Abstract
Chlorinated volatile organic compounds (CVOCs) have been regarded as hazardous atmospheric pollutants, and catalytic oxidative destruction has been considered as the most efficient method to handle such contaminants. Herein, characteristics of Al, Si and Ti based supporting materials were modified with cupric chloride to
enhance catalytic performance for the complete oxidation of 1,2-dichlroethane (DCE). According to the supporting
materials in the presence or absence of active materials, physicochemical properties of catalysts appear to be quite differentiated, and the relationship between modified properties and its catalytic performance was observed and discussed. Among the studied catalysts, CuCl2/Al1Ti1Ox composite showed the highest catalytic performance, which could
be attributed to several beneficial effects associated with proper textural property, abundant acid sites and oxidizing
ability. This catalyst designing strategy described in this study suggests a prospective way to develop efficient catalysts
fashioned of non-precious, earth-abundant materials for the catalytic oxidation of CVOCs
Keywords
References
2. P. Yang, M. Song, D. Kim, S. P. Jung and Y. Hwang, Korean J. Chem.Eng., 36, 1806 (2019).
3. J. W. Jeon, D. H. Lee, Y. S. Won and M. G. Lee, Korean J. Chem. Eng.,35, 744 (2018).
4. C.A. Santos, N.H. Phuong, M.J. Park, S.B. Kim and Y.M. Jo, Korean J. Chem. Eng., 37, 120 (2020).
5. C. Dai, Y. Zhou, H. Peng, S. Huang, P. Qin, J. Zhang, Y. Yang, L.Luo and X. Zhang, J. Ind. Eng. Chem., 62, 106 (2018).
6. S. Ojala, S. Pitkäaho, T. Laitinen, N. Niskala Koivikko, R. Brahmi,J. Gaálová, L. Matejova, A. Kucherov, S. Päivärinta, C. Hirschmann,T. Nevanperä, M. Riihimäki, M. Pirilä and R. L. Keiski, Top. Catal.,54, 1224 (2011).
7. S. Lee, H. Han, W. Yoon and W. B. Kim, Appl. Catal. A Gen., 611,117970 (2021).
8. Q. Dai, S. Bai, H. Li, W. Liu, X. Wang and G. Lu, Appl. Catal. B Environ., 168-169, 141 (2015).
9. S. Cao, H. Wang, F. Yu, M. Shi, S. Chen, X. Weng, Y. Liu and Z.Wu, J. Colloid Interface Sci., 463, 233 (2016).
10. Y. Deng, S. Peng, H. Liu, S. Li and Y. Chen, Front. Environ. Sci.Eng., 13, 21 (2019).
11. H.A. Miran, M. Altarawneh, Z.T. Jiang, H. Oskierski, M. Almatarneh and B. Z. Dlugogorski, Catal. Sci. Technol., 7, 3902 (2017).
12. I. Maupin, L. Pinard, J. Mijoin and P. Magnoux, J. Catal., 291, 104(2012).
13. L. Wang, M. Sakurai and H. Kameyama, J. Hazard. Mater., 154, 390(2008).
14. A. Aranzabal, J.A. González-Marcos, J.L. Ayastuy and J.R. GonzálezVelasco, Chem. Eng. Sci., 61, 3564 (2006).
15. Y. Gu, X. Jiang, W. Sun, S. Bai, Q. Dai and X. Wang, ACS Omega,3, 8460 (2018).
16. R. López-Fonseca, J. I. Gutiérrez-Ortiz, M. A. Gutiérrez-Ortiz and J. R. González-Velasco, J. Catal., 209, 145 (2002).
17. A. Aranzabal, J. A. González-Marcos, M. Romero-Sáez, J. R.González-Velasco, M. Guillemot and P. Magnoux, Appl. Catal. B
Environ., 88, 533 (2009).
18. Q. Huang, X. Xue and R. Zhou, J. Hazard. Mater., 183, 694 (2010).
19. R. López-Fonseca, S. Cibrián, J. I. Gutiérrez-Ortiz, M. A. Gutiérrez-Ortiz and J. R. González-Velasco, AIChE J., 49, 496 (2003).
20. P. Yang, S. Fan, Z. Chen, G. Bao, S. Zuo and C. Qi, Appl. Catal. B Environ., 239, 114 (2018).
21. Z. Fei, C. Cheng, H. Chen, L. Li, Y. Yang, Q. Liu, X. Chen, Z. Zhang,J. Tang, M. Cui and X. Qiao, Chem. Eng. J., 370, 916 (2019).
22. P. Yang, S. Zuo, Z. Shi, F. Tao and R. Zhou, Appl. Catal. B Environ., 191, 53 (2016).
23. J. Mao, F. Tao, Z. Zhang and R. Zhou, Environ. Sci. Pollut. Res., 25,27413 (2018).
24. S. Bai, B. Shi, W. Deng, Q. Dai and X. Wang, RSC Adv., 5, 48916(2015).
25. A. Khaleel and M. Nawaz, J. Environ. Sci., 29, 199 (2015).
26. W. Yoon, S. Lee, Y. Noh, S. Park, Y. Kim, H. Ju Kim, H. J. Chae and W. Bae Kim, ChemCatChem, 12, 5098 (2020).
27. P. Yang, Z. Shi, F. Tao, S. Yang and R. Zhou, Chem. Eng. Sci., 134,340 (2015).
28. M. Tian, M. Ma, B. Xu, C. Chen, C. He, Z. Hao and R. Albilali,Catal. Sci. Technol., 8, 4503 (2018).
29. M. Tian, X. Guo, R. Dong, Z. Guo, J. Shi, Y. Yu, M. Cheng, R.Albilali and C. He, Appl. Catal. B Environ., 259, 118018 (2019).
30. F. Tao, S. Yang, P. Yang, Z. Shi and R. Zhou, J. Rare Earths, 34, 381(2016).
31. J. Wan, P. Yang, X. Guo and R. Zhou, Chinese J. Catal., 40, 1100(2019).
32. S. Lee, W. Yoon, J. Ji, H. Ahn and W. B. Kim, J. Environ. Chem.Eng., 10, 108325 (2022).
33. T. K. Tseng, L. Wang, C. T. Ho and H. Chu, J. Hazard. Mater., 178,1035 (2010).
34. Z. El Assal, S. Ojala, M. Zbair, H. Echchtouki, T. Nevanperä, S. Pitkäaho, L. Pirault-Roy, M. Bensitel, R. Brahmi and R. L. Keiski, J.
Clean. Prod., 228, 814 (2019).
35. Y. Gao, J. Xiao, J. Ye, X. Huo and Y. Shen, Korean J. Chem. Eng.,37, 54 (2020).
36. T. Wang, Q. Dai and F. Yan, Korean J. Chem. Eng., 34, 664 (2017).
37. Ratnawulan, A. Fauzi and S. H. AE, AIP Conf. Proc., 1868, 060009(2017).
38. N. A. Raship, M. Z. Sahdan, F. Adriyanto, M. F. Nurfazliana and A. S. Bakri, AIP Conf. Proc., 1788, 030121 (2017).
39. J. I. Gutiérrez-Ortiz, B. de Rivas, R. López-Fonseca, S. Martín and J. R. González-Velasco, Chemosphere, 68, 1004 (2007).
40. W. Hua, C. Zhang, Y. Guo, G. Chai, C. Wang, Y. Guo, L. Wang, Y.Wang and W. Zhan, Appl. Catal. B Environ., 255, 117748 (2019).
41. M. S. Han, B. G. Lee, B. S. Ahn, D. J. Moon and S. I. Hong, Appl.Surf. Sci., 211, 76 (2003).
42. Y. N. Pushkar, A. Sinitsky, O. O. Parenago, A. N. Kharlanov and E. V.Lunina, Appl. Surf. Sci., 167, 69 (2000).
43. J. Pan and M. V. Ramakrishna, Phys. Rev. B, 50, 15431 (1994).
44. M. Ramos, C. Díaz, A. E. Martínez, H. F. Busnengo and F. Martín,Phys. Chem. Chem. Phys., 19, 10217 (2017).
45. M. M. Can, S. Ismat Shah, M. F. Doty, C. R. Haughn and T. Frat, J.Phys. D: Appl. Phys., 45, 195104 (2012).
46. S. Jain, J. Shah, N. S. Negi, C. Sharma and R. K. Kotnala, Int. J.Energy Res., 43, 4743 (2019).
47. M. C. Biesinger, Surf. Interface Anal., 49, 1325 (2017).
48. A. Sápi, U. Kashaboina, K. B. Ábrahámné, J. F. Gómez-Pérez, I.Szenti, G. Halasi, K. János, N. Balázs, V. Tamásm, K. Ákosm and Z. Kónya, Front. Mater., 6, 127 (2019)