Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 12, 2022
Revised September 18, 2022
Accepted September 25, 2022
- Acknowledgements
- This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1F1A1047108). This work was supported by the ERC Center funded by the National Research Foundation of Korea (NRF-2022R1A5A1033719). The authors also acknowledge the financial support from Korea Gas Corporation(KOGAS) under Award No. 2021-02 (202122671542)
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Optimization of water-saturated superabsorbent polymers for hydrate-based gas storage
Abstract
Gas hydrates are an environmentally benign and cost-effective gas storage media that can store gas molecules in a lattice formed by hydrogen bonds between water molecules. To utilize gas hydrates on an industrial scale, the
formation rate of gas hydrates must be improved. In this study, superabsorbent polymer (SAP) having a three-dimensional porous polymeric network was used to promote the formation of natural gas hydrates. SAP can absorb water
efficiently and improve the kinetics of natural gas hydrates without mechanical agitation by expanding the gas-water
interfacial area. The promotion effect of SAP is affected by various factors: the formation rate of natural gas hydrate
and its reproducibility are determined by how water is dispersed over the SAP powders. Moreover, as the SAP is less
crosslinked, the natural gas hydrate formation occurs more rapidly. The amount of saturated water is also a critical factor in determining the formation rate and yield of natural gas hydrates. Through this study, we provide engineering
data to design hydrate-based gas storage media in a quiescent system for a large-scale application.
Keywords
References
2. U. Epa, C. Change Division, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2020 – Main Text, 1990. https://www.
epa.gov/ghgemissions/draft-inventory-us-greenhouse-gas-emissions (accessed July 11, 2022).
3. J. Conti, P. Holtberg, J. Diefenderfer, A. LaRose, J. T. Turnure and L. Westfall, International Energy Outlook 2016 With Projections
to 2040, 2016.
4. J. Kim, Y. Noh and D. Chang, Appl. Energy, 212, 1417 (2018).
5. K. B. Deshpande, W. B. Zimmerman, M. T. Tennant, M. B. Webster and M. W. Lukaszewski, Chem. Eng. J., 170, 44 (2011).
6. H. P. Veluswamy, A. Kumar, Y. Seo, J. D. Lee and P. Linga, Appl.Energy, 216, 262 (2018).
7. E. D. Sloan and C. A. Koh, Clathrate hydrates of natural gases, 3rd Ed., CRC Press (Taylor and Francis Group) (2008).
8. G. Bhattacharjee, M. N. Goh, S. E. K. Arumuganainar, Y. Zhang and P. Linga, Energy Environ. Sci., 13, 4946 (2020).
9. Y. H. Ahn, Y. Youn, M. Cha and H. Lee, RSC Adv., 7, 12359(2017).
10. Y. H. Ahn, H. Kang, M. Cha, K. Shin and H. Lee, ACS Omega, 2,1601 (2017).
11. H. Kang, Y.-H. Ahn, D.-Y. Koh and H. Lee, Korean J. Chem. Eng.,33, 1897 (2016).
12. K. Inkong, P. Rangsunvigit, S. Kulprathipanja and P. Linga, Fuel,255, 115705 (2019).
13. G. Pandey, H. P. Veluswamy, J. Sangwai and P. Linga, Energy Fuels,33, 4865 (2019).
14. D. W. Kang, W. Lee, Y. H. Ahn and J. W. Lee, J. Mol. Liq., 349,118490 (2022).
15. W. Lee, D. W. Kang, Y.-H. Ahn and J. W. Lee, ACS Sustain. Chem.Eng., 9, 8414 (2021).
16. B. H. Shi, L. Yang, S. S. Fan and X. Lou, Fuel, 194, 395 (2017).
17. S. Baek, Y. H. Ahn, J. Zhang, J. Min, H. Lee and J. W. Lee, Appl.Energy, 202, 32 (2017).
18. Y. H. Ahn, S. Moon, D. Y. Koh, S. Hong, H. Lee, J. W. Lee and Y.Park, Energy Storage Mater., 24, 655 (2020).
19. S. Moon, Y. Lee, D. Seo, S. Lee, S. Hong, Y. H. Ahn and Y. Park,Renew. Sustain. Energy Rev., 141, 110789 (2021).
20. H. Kang, Y. H. Ahn, D. Y. Koh, S. Baek, J. W. Lee and H. Lee, Ind.Eng. Chem. Res., 55, 6079 (2016).
21. S. Baek, J. Min, Y. H. Ahn, M. Cha and J. W. Lee, Energy Fuels, 33,523 (2019).
22. S. Baek, W. Lee, J. Min, Y. H. Ahn, D. W. Kang and J. W. Lee,Korean J. Chem. Eng., 37, 341 (2020).
23. V. D. Chari, D. V. S. G. K. Sharma, P. S. R. Prasad and S. R. Murthy,J. Nat. Gas Sci. Eng., 11, 7 (2013).
24. H. P. Veluswamy, P. S. R. Prasad and P. Linga, Korean J. Chem.Eng., 33, 2050 (2016).
25. S. Rungrussamee, K. Inkong, S. Kulprathipanja and P. Rangsunvigit, Chem. Eng. Trans., 70, 1519 (2018).
26. F. Su, C. L. Bray, B. O. Carter, G. Overend, C. Cropper, J. A. Iggo,Y. Z. Khimyak, A. M. Fogg and A. I. Cooper, Adv. Mater., 21, 2382(2009).
27. M. J. Zohuriaan-Mehr and K. Kabiri, Iran. Polym. J. (English Ed.),17, 451 (2008).
28. D. W. Kang, W. Lee, Y. H. Ahn and J. W. Lee, Chem. Eng. J., 411,128512 (2021).
29. D. W. Kang, W. Lee and Y. H. Ahn, J. CO2 Util., 61, 102005 (2022).
30. H. Kim, Y. H. Ahn, Y. Seo and C. D. Wood, Fuel, 257, 116035(2019).
31. Y. Lee, S. Moon, S. Hong, S. Lee and Y. Park, Chem. Eng. J., 389,123749 (2020).
32. F. Inomata, K. Takabe and H. Saiki, J. Electron Microsc. (Tokyo),41, 369 (1992).
33. H. S. Truong-Lam, H. S. Truong-Lam, S. D. Seo, S. Kim, Y. Seo and J. D. Lee, Energy Fuels, 34, 6288 (2020).
34. S. Subramanian, R. A. Kini, S. F. Dec and E. D. Sloan, Chem. Eng. Sci., 55, 1981 (2000).
35. R. Kumar, P. Linga, I. Moudrakovski, J. A. Ripmeester and P.Englezos, AIChE J., 54, 2132 (2008).
36. A. Hassanpouryouzband, E. Joonaki, M. Vasheghani Farahani, S.Takeya, C. Ruppel, J. Yang, N. J. English, J. M. Schicks, K. Edlmann, H. Mehrabian, Z. M. Aman and B. Tohidi, Chem. Soc. Rev.,49, 5225 (2020).
37. W. Liu, S. Wang, M. Yang, Y. Song, S. Wang and J. Zhao, J. Nat.Gas Sci. Eng., 24, 357 (2015).
38. Z. G. Sun, R. Wang, R. Ma, K. Guo and S. Fan, Energy Convers.Manag., 44, 2733 (2003).