ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 15, 2022
Revised October 12, 2022
Accepted October 26, 2022
Acknowledgements
This study was supported by the Research Program funded by the SeoulTech (Seoul National University of Science and Technology).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

N-doped mesoporous activated carbon derived from protein-rich biomass for energy storage applications

Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea
hjahn@seoultech.ac.kr
Korean Journal of Chemical Engineering, May 2023, 40(5), 1071-1076(6), 10.1007/s11814-022-1325-7
downloadDownload PDF

Abstract

Biomass-derived activated carbon has attracted global attention for supercapacitor applications owing to the limitations of depletable resources and the high cost of conventional activated carbon manufacturing processes. Activated carbon for energy storage requires a large surface area for performing a high energy density, which is the main challenge for biomass-derived activated carbon. Here, we suggest a protein-rich mealworm as a competitive raw material for the activated carbon manufacturing process. Mealworm-based N-doped mesoporous carbon was developed through the synergistic effect of intrinsic amino acids and fatty acids in the mealworm and a KOH activation process. The mealworm-based N-doped mesoporous carbon electrode exhibited a competitive specific capacity at both low and high current densities (154.8 F/g at a current density of 0.2 A/g and 137 F/g at a current density of 5.0 A/g) owing to the high specific surface area (2,470.5 m2 /g) and N-doped carbon structure. This superior energy storage capability contributed to its optimized mesoporous morphology and an N-doped carbon structure, which was generated during the KOH activation process.

References

1. A. A. Kebede, T. Kalogiannis, J. V. Mierlo and M. Berecibar, Renew.Sust. Energ. Rev., 159, 112213 (2022).
2. J. Xiao, J. Han, C. Zhang, G. Ling, F. Kang and Q.-H. Yang, Adv.Energy Mater., 12, 2100775 (2022).
3. G. Chen, F. Wang, S. Wang, C. Ji, W. Wang, J. Dong and F. Gao,Korean J. Chem. Eng., 38, 46 (2021).
4. Y. Yang, E. G. Okonkwo, G. Huang, S. Xu, W. Sun and Y. He,Energy Storage Mater., 36, 186 (2021).
5. M. Singh, D. Zappa and E. Comini, Int. J. Hydrog. Energy, 46, 27643(2021).
6. K.-H Kim, J.-Y. Kim and H.-J. Ahn, J. Ceram. Process. Res., 22, 1(2021).
7. S. Saini, P. Chand and A. Joshi, J. Energy Storage, 39, 102646 (2021).
8. A. Jain, M. Ghosh, M. Krajewski, S. Kurungot and M. Michalska,J. Energy Storage, 34, 102178 (2021).
9. M. Shaker, A. A. S. Ghazvini, W. Cao, R. Riahifar and Q. Ge, New Carbon Mater., 36, 546 (2021).
10. S. Rawat, R. K. Mishra and T. Bhaskar, Chemosphere, 286, 131961(2022).
11. Y. Liu, P. Liu, L. Li, S. Wang, Z. Pan, C. Song and T. Wang, J. Electroanal. Chem., 903, 115828 (2021).
12. K. Kanjana, P. Harding, T. Kwamman, W. Kingkam and T. Chutimasakul, Biomass Bioenerg., 153, 106206 (2021).
13. P. Manasa, S. Sambasivam and F. Ran, J. Energy Storage, 54, 105290(2022).
14. E. Lim, J. Chun, C. Jo and J. Hwang, Korean J. Chem. Eng., 38, 227(2021).
15. V. Thirumal, K. Dhamodharan, R. Yuvakkumar, G. Ravi, B. Saravanakumar, M. Thambidurai, C. Dang and D. Velauthapillai, Chemosphere, 282, 131033 (2021).
16. A. Wang, K. Sun, R. Xu, Y. Sun and J. Jiang, J. Clean Prod., 283,125385 (2021).
17. S. Mancini, G. Sogari, S. E. Diaz, D. Menozzi, G. Paci and R. Moruzzo, Foods, 11, 455 (2022).
18. K.-H. Kim, J. S. Lee and H.-J. Ahn, Appl. Surf. Sci., 550, 149266(2021).
19. T. Liu, L. Zhang, W. You and J. Yu, Small, 14, 1702407 (2018).
20. Y. Liu, Y. Wang, C. Shi, Y. Chen, D. Li, Z. He, C. Wang, L. Guo and J. Ma, Carbon, 165, 129 (2020).
21. K.-H. Kim, D.-Y. Shin and H.-J. Ahn, J. Ind. Eng. Chem., 84, 393(2020).
22. J. Kwon, K.-H. Kim, H.-J. Ahn and Y. Hwang, J. Ceram. Process.Res., 22, 186 (2021).
23. K.-H. Kim, W. Hu, H. S. Chang and H.-J. Ahn, J. Alloy. Compd.,896, 163148 (2021).
24. H.-G. Jo, K.-H. Kim and H.-J. Ahn, Appl. Surf. Sci., 554, 149594(2021).
25. M. Gao, X. Wang, C. Xia, N. Song, Y. Ma, Q. Wang, T. Yang, S. Ge,C. Wu and S. S. Lam, Korean J. Chem. Eng., 12, 141 (2015).
26. M. A. Azam, N. S. N. Ramli, N. A. N. M. Nor and T. I. T. Nawi, Int.J. Energy. Res., 45, 8335 (2021).
27. D.-Y. Shin, J. S. Lee, B.-R. Koo and H.-J. Ahn, Chem. Eng. J., 412,128547 (2021).
28. E. R.-Pinero, M. Cadek and F. Beguin, Adv. Funct. Mater., 19, 1032(2009).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로