Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 13, 2022
Revised November 1, 2022
Accepted November 10, 2022
- Acknowledgements
- This work was supported by the grant provided by the School of Environment, College of Engineering, University of Tehran, Tehran, Iran
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Detoxification of groundwater contaminated with Cr(VI) using continuous electrochemical cell equipped with copper foam electrode modified with palladium nanoparticles
Abstract
This study investigated the detoxification of water contaminated with hexavalent chromium through a catalytic electrochemical reduction process using metallic foam cathodes. To select the proper materials to be used in a
continuous electrochemical cell, batch experiments were performed on copper and nickel metallic foams, as potential
cathodes, in the presence and absence of a coating layer of either palladium or silver nanoparticles, as potential catalysts. Regarding the results, copper foam and copper foam coated with palladium nanoparticles (PdNPs) were chosen.
Next, the effects of parameters including pH, flow rate, electrical current intensity, and the initial concentration of
hexavalent chromium were studied utilizing the continuous column of copper foam before and after adding PdNPs.
The response surface methodology and the Box-Behnken Design approach were applied to optimize the significant
parameters. Results indicated that the palladium nanocatalyst has significant effects on reduction efficiency. Through
further experiments, we also found that the presence of nitrate and other coexisting ions has negligible impact on
reduction efficiency. The optimum charts of chromium reduction were plotted based on the results. A sample optimum point gives a 97.8% reduction efficiency at pH=7, flow rate=50 mL min1
, initial concentration=0.45 mg L1
, and
electric current of 0.3 A.
Keywords
References
2. C. F. Carolin, P. S. Kumar, A. Saravanan, G. J. Joshiba and M. Naushad, J. Environ. Chem. Eng., 5, 2782 (2017).
3. A. Jawed, V. Saxena and L. M. Pandey, J. Water Process Eng., 33,101009 (2020).
4. USEPA, Chromium in Drinking Water (2022).
5. J. Regan, N. Dushaj and G. Stinch, ACS OMEGA 11554 (2019).
6. Z. Ye, X. Yin, L. Chen, X. He, Z. Lin, C. Liu, S. Ning, X. Wang and Y. Wei, J. Clean. Prod., 236, 117631 (2019).
7. N. Liu, Y. Zhang, C. Xu, P. Liu, J. Lv, Y. Liu and Q. Wang, J. Hazard. Mater., 384, 121371 (2020).
8. Z.H. Farooqi, M.W. Akram, R. Begum, W. Wu and A. Irfan, J. Hazard. Mater., 402, 123535 (2020).
9. P. Liu, X. Wang, J. Ma, H. Liu and P. Ning, Chemosphere, 220, 1003(2019).
10. WHO, Guidelines for drinking-water quality, World Health Organization (2022).
11. J. C. Almeida, C. E. D. Cardoso, D. S. Tavares, R. Freitas, T. Trindade, C. Vale and E. Pereira, TrAC - Trends Anal. Chem., 118, 277(2019).
12. K. Simeonidis, E. Kaprara, T. Samaras, M. Angelakeris, N. Pliatsikas, G. Vourlias, M. Mitrakas and N. Andritsos, Sci. Total Environ., 535, 61 (2015).
13. A. Addala, M. Boudiaf, M. Elektorowicz, E. Bentouhami and Y.Bengeurba, Water Sci Technol., 84, 1206 (2021).
14. L. Zhang, W. Niu, J. Sun and Q. Zhou, Chemosphere, 248, 126102(2020).
15. A. K. Mallik, A. Moktadir, A. Rahman and M. Mizanur, J. Hazard. Mater., 423, 127041 (2022).
16. S. Jamshidifard, S. Koushkbaghi, S. Hosseini, S. Rezaei, A. Karamipour, A. Jafari rad and M. Irani, J. Hazard. Mater., 368, 10 (2019).
17. V. Kumar and S. K. Dwivedi, J. Clean. Prod., 295, 126229 (2021).
18. X. Yang, Z. Zhao, G. Zhang, S. Hirayama, B. Van Nguyen, Z. Lei,K. Shimizu and Z. Zhang, J. Hazard. Mater., 414, 125479 (2021).
19. C. Su, S. Wang, Z. Zhou, H. Wang, X. Xie, Y. Yang, Y. Feng, W. Liu and P. Liu, Sci. Total Environ., 768, 144604 (2021).
20. F. Yao, M. Jia, Q. Yang, K. Luo, F. Chen, Y. Zhong, L. He, Z. Pi, K.Hou, D. Wang and X. Li, Chemosphere, 260, 127537 (2020).
21. C. Barrera-Díaz, V. Lugo-Lugo, G. Roa-Morales, R. Natividad and S. A. Martínez-Delgadillo, J. Hazard. Mater., 185, 1362 (2011).
22. P. Kuang, C. Feng, M. Li, N. Chen, Q. Hu, G. Wang and R. Li, J.Electrochem. Soc., 164, E103 (2017).
23. W. Huang, M. Li, B. Zhang, C. Feng, X. Lei and B. Xu, Water Environ. Res., 85, 224 (2013).
24. M. G. Dipen Kumar Rajak, An insight into metal based foams: processing, properties and applications, Springer Singapore (2020).
25. L. Rajic, N. Fallahpour, E. Podlaha and A. Alshawabkeh, Chemosphere, 147, 98 (2016).
26. C.-C. Ho, J.-S. Yu, S.-W. Yang, V. Ya, H. A. Le, L.-P. Cheng, K.-H.Choo and C.-W. Li, J. Water Process Eng., 42, 102191 (2021).
27. W. Jin, H. Du, S. Zheng and Y. Zhang, Electrochim. Acta, 191, 1044(2016).
28. K. Govindan, M. Noel and R. Mohan, J. Water Process Eng., 6, 58(2015).
29. L. Rajic, N. Fallahpour, E. Podlaha and A. Alshawabkeh, Chemosphere, 147, 98 (2016).
30. R. Mao, X. Zhao, H. Lan, H. Liu and J. Qu, Water Res., 77, 1 (2015).
31. W. Yang, S. Yang, W. Sun, G. Sun and Q. Xin, J. Power Sources, 160,1420 (2006).
32. S. Bajpai, S. K. Gupta, A. Dey, M. K. Jha, V. Bajpai, S. Joshi and A.Gupta, J. Hazard. Mater., 227-228, 436 (2012).
33. T. Mitra, B. Singha, N. Bar and S. K. Das, J. Hazard. Mater., 273,94 (2014).
34. J. Li, H. Wang, L. Wang, C. Ma, C. Luan, B. Zhao, Z. Zhang, H.Zhang, X. Cheng and J. Liu, Catalysts, 8, 378 (2018).
35. S. Tabatabaei, B. Forouzesh Rad and M. Baghdadi, Chemosphere,251, 126309 (2020).
36. M. Jain, V. K. Garg and K. Kadirvelu, Bioresour. Technol., 102, 600(2011).
37. S. Mandal, S. S. Mahapatra and R. K. Patel, J. Environ. Chem. Eng.,3, 870 (2015).
38. A. Li, X. Zhao, Y. Hou, H. Liu, L. Wu and J. Qu, Appl. Catal. B Environ., 111-112, 628 (2012).