Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 24, 2022
Revised August 6, 2022
Accepted August 10, 2022
- Acknowledgements
- This work was financially supported by the National Key Research and Development Program of China (No. 2018YFA0702304) and Science and Development Key R&D Program of Changchun City (No. 21ZY28).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Bioinspired spindle-knotted structure fiber membrane prepared by modified coaxial electrospinning for water-in-oil emulsion separation
Abstract
Inspired by the conformation of spider silks, fibers with multiscale spindle-knotted structures were fabricated via a one-step modified coaxial electrospinning method. Under a high-voltage electric field, hydrophobic silica
polystyrene (PS) fibers coated poly (methyl methacrylate) (PMMA) fibers were integrated together during the electrospinning process. Due to the addition of hydrophobic gaseous SiO2 combining the spindle structure, a superhydrophobic fibrous membrane was prepared, and the bioinspired fibers achieved a superhydrophobic/superoleophilic performance for efficient emulsion separation. The results demonstrate that the incorporation of PS and SiO2 improved the
efficiency of emulsion separation of the fabricated fibrous membranes by optimizing microstructure and wettability:
Specifically, an extraordinary water contact angle under oil (162o
) and a satisfied oil contact angle under water (0o
). For
water-in-diesel emulsions, a high separation efficiency of 99.1% was obtained for membrane with PS addition of 4 wt%,
which is greater than of pure PVDF membrane with SiO2 (75.5%). It performs better than most other membranes
showing strong promise in grease purification and oily wastewater treatment.
References
2. C. H. Peterson, S. D. Rice, J. W. Short, D. Esler, J. L. Bodkin, B. E.Ballachey and D. B. Irons, Science, 302, 2082 (2003).
3. W. Zhang, N. Liu, Y. Cao, X. Lin, Y. Liu and L. Feng, Adv. Mater.Interfaces, 4, 1700029 (2017).
4. B. Wang, W. Liang, Z. Guo and W. Liu, Chem. Soc. Rev., 44, 336(2015).
5. E. S. Dmitrieva, T. S. Anokhina, E. G. Novitsky, V. V. Volkov, A. V.Volkov and I. L. Borisov, Polymers, 14, 980 (2022).
6. L. Zhang, H. Li, X. Lai, X. Su, T. Liang and X. Zeng, Chem. Eng. J.,316, 736 (2017).
7. Q. Fan, T. Lu, Y. Deng, Y. Zhang, W. Ma, R. Xiong and C. Huang,Sep. Purif. Technol., 297, 121445 (2022).
8. A. Huang, L. H. Chen, C. C. Kan, T. Y. Hsu, S. E. Wu, K. K. Jana and K. L. Tung, J. Membr. Sci., 566, 249 (2018).
9. N. Chen and Q. Pan, ACS Nano, 7, 6875 (2013).
10. J. Hu, J. Zhu, C. Jiang, T. Guo, Q. Song and L. Xie, Colloids Surf. A Physicochem. Eng. Asp., 577, 429 (2019).
11. L. Zhang, Y. Zhang, P. Chen, W. Du, X. Feng and B. F. Liu, Langmuir, 35, 11123 (2019).
12. C. Li, L. Wu, C. Yu, Z. Dong and L. Jiang, Angew. Chem. Int. Ed.,56, 13623 (2017).
13. W. Ji, H. Wang, Y. Yao and R. Wang, Cellulose, 26, 6879 (2019).
14. M. Ge, C. Cao, J. Huang, X. Zhang, Y. Tang, X. Zhou, K. Zhang, Z.Chen and Y. Lai, Nanoscale Horiz., 3, 235 (2018).
15. W. Zhou, S. Li, Y. Liu, Z. Xu, S. Wei, G. Wang, J. Lian and Q. Jiang,ACS Appl. Mater. Interfaces, 10, 9841 (2018).
16. N. Naseeb, A. A. Mohammed, T. Laoui and Z. Khan, Materials, 12,212 (2019).
17. W. Fang, L. Liu and G. Guo, Chem. Eur. J., 23, 11253 (2017).
18. R. Pan, M. Cai, W. Liu, X. Luo, C. Chen, H. Zhang and M. Zhong,J. Mater. Chem. A., 7, 18050 (2019).
19. A. Azimi and P. He, MRS Commun., 10, 129 (2020).
20. J. Li, W. Jiao, Y. Wang, Y. Yin and X. He, Chem. Eng. J., 434, 134710(2022).
21. Z. Zhang, N. Han, L. Tan, Y. Qian, H. Zhang, M. Wang, W. Li, Z.Cui and X. Zhang, Langmuir, 35, 16545 (2019).
22. J. Zhang, X. Huang, Y. Xiong, W. Zheng, W. Liu, M. He, L. Li, J.Liu, L. Lu and K. Peng, Sep. Purif. Technol., 280, 119824 (2022).
23. W. Yu, Q. Ma, X. Li, X. Dong, J. Wang and G. Liu, Mater. Lett., 120,126 (2014).
24. C. Chen, L. Chen, D. Weng, S. Chen, J. Liu and J. Wang, Sep. Purif.Technol., 288, 120621 (2022).
25. J. Li, X. Zhou, J. Li, L. Che, J. Yao, G. McHale, M. K. Chaudhury and Z. Wang, Sci. Adv., 3, 19 (2017).
26. L. Yong-Qiang, C. Wen-Hui and L. Ling, Microgravity Sci. Technol.,29, 65 (2017).
27. H. Li, G. Zhu, Y. Shen, Z. Han, J. Zhang and J. Li, J. Colloid Interface Sci., 557, 84 (2019).
28. J. Wu, H. Li, X. Lai, Z. Chen and X. Zeng, Ind. Eng. Chem. Res.,58, 8791 (2019).
29. E. Mosayebi, T. Zhao, S. Azizian and D. Zhao, Surf. Interfaces, 27,101464 (2021).
30. K. Li, J. Ju, Z. Xue, J. Ma, L. Feng, S. Gao and L. Jiang, Nat. Commun., 4, 2276 (2013).
31. J. Zhang, L. Liu, Y. Si, S. Zhang, J. Yu and B. Ding, Nanotechnology,32, 495704 (2021).