ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 24, 2022
Revised August 6, 2022
Accepted August 10, 2022
Acknowledgements
This work was financially supported by the National Key Research and Development Program of China (No. 2018YFA0702304) and Science and Development Key R&D Program of Changchun City (No. 21ZY28).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Bioinspired spindle-knotted structure fiber membrane prepared by modified coaxial electrospinning for water-in-oil emulsion separation

1Key Laboratory of Advanced Structural Materials, Changchun University of Technology, Changchun, 130012, P. R. China 2Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun, 130025, P. R. China 3Key Laboratory of Bionic Engineering (Ministry of Education) and State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, P. R. Chin
materwanggy@jlu.edu.cn
Korean Journal of Chemical Engineering, May 2023, 40(5), 1086-1093(8), 10.1007/s11814-022-1254-5
downloadDownload PDF

Abstract

Inspired by the conformation of spider silks, fibers with multiscale spindle-knotted structures were fabricated via a one-step modified coaxial electrospinning method. Under a high-voltage electric field, hydrophobic silica polystyrene (PS) fibers coated poly (methyl methacrylate) (PMMA) fibers were integrated together during the electrospinning process. Due to the addition of hydrophobic gaseous SiO2 combining the spindle structure, a superhydrophobic fibrous membrane was prepared, and the bioinspired fibers achieved a superhydrophobic/superoleophilic performance for efficient emulsion separation. The results demonstrate that the incorporation of PS and SiO2 improved the efficiency of emulsion separation of the fabricated fibrous membranes by optimizing microstructure and wettability: Specifically, an extraordinary water contact angle under oil (162o ) and a satisfied oil contact angle under water (0o ). For water-in-diesel emulsions, a high separation efficiency of 99.1% was obtained for membrane with PS addition of 4 wt%, which is greater than of pure PVDF membrane with SiO2 (75.5%). It performs better than most other membranes showing strong promise in grease purification and oily wastewater treatment.

References

1. J. Wang, F. Han, Y. Chen and H. Wang, Sep. Purif. Technol., 209,119 (2019).
2. C. H. Peterson, S. D. Rice, J. W. Short, D. Esler, J. L. Bodkin, B. E.Ballachey and D. B. Irons, Science, 302, 2082 (2003).
3. W. Zhang, N. Liu, Y. Cao, X. Lin, Y. Liu and L. Feng, Adv. Mater.Interfaces, 4, 1700029 (2017).
4. B. Wang, W. Liang, Z. Guo and W. Liu, Chem. Soc. Rev., 44, 336(2015).
5. E. S. Dmitrieva, T. S. Anokhina, E. G. Novitsky, V. V. Volkov, A. V.Volkov and I. L. Borisov, Polymers, 14, 980 (2022).
6. L. Zhang, H. Li, X. Lai, X. Su, T. Liang and X. Zeng, Chem. Eng. J.,316, 736 (2017).
7. Q. Fan, T. Lu, Y. Deng, Y. Zhang, W. Ma, R. Xiong and C. Huang,Sep. Purif. Technol., 297, 121445 (2022).
8. A. Huang, L. H. Chen, C. C. Kan, T. Y. Hsu, S. E. Wu, K. K. Jana and K. L. Tung, J. Membr. Sci., 566, 249 (2018).
9. N. Chen and Q. Pan, ACS Nano, 7, 6875 (2013).
10. J. Hu, J. Zhu, C. Jiang, T. Guo, Q. Song and L. Xie, Colloids Surf. A Physicochem. Eng. Asp., 577, 429 (2019).
11. L. Zhang, Y. Zhang, P. Chen, W. Du, X. Feng and B. F. Liu, Langmuir, 35, 11123 (2019).
12. C. Li, L. Wu, C. Yu, Z. Dong and L. Jiang, Angew. Chem. Int. Ed.,56, 13623 (2017).
13. W. Ji, H. Wang, Y. Yao and R. Wang, Cellulose, 26, 6879 (2019).
14. M. Ge, C. Cao, J. Huang, X. Zhang, Y. Tang, X. Zhou, K. Zhang, Z.Chen and Y. Lai, Nanoscale Horiz., 3, 235 (2018).
15. W. Zhou, S. Li, Y. Liu, Z. Xu, S. Wei, G. Wang, J. Lian and Q. Jiang,ACS Appl. Mater. Interfaces, 10, 9841 (2018).
16. N. Naseeb, A. A. Mohammed, T. Laoui and Z. Khan, Materials, 12,212 (2019).
17. W. Fang, L. Liu and G. Guo, Chem. Eur. J., 23, 11253 (2017).
18. R. Pan, M. Cai, W. Liu, X. Luo, C. Chen, H. Zhang and M. Zhong,J. Mater. Chem. A., 7, 18050 (2019).
19. A. Azimi and P. He, MRS Commun., 10, 129 (2020).
20. J. Li, W. Jiao, Y. Wang, Y. Yin and X. He, Chem. Eng. J., 434, 134710(2022).
21. Z. Zhang, N. Han, L. Tan, Y. Qian, H. Zhang, M. Wang, W. Li, Z.Cui and X. Zhang, Langmuir, 35, 16545 (2019).
22. J. Zhang, X. Huang, Y. Xiong, W. Zheng, W. Liu, M. He, L. Li, J.Liu, L. Lu and K. Peng, Sep. Purif. Technol., 280, 119824 (2022).
23. W. Yu, Q. Ma, X. Li, X. Dong, J. Wang and G. Liu, Mater. Lett., 120,126 (2014).
24. C. Chen, L. Chen, D. Weng, S. Chen, J. Liu and J. Wang, Sep. Purif.Technol., 288, 120621 (2022).
25. J. Li, X. Zhou, J. Li, L. Che, J. Yao, G. McHale, M. K. Chaudhury and Z. Wang, Sci. Adv., 3, 19 (2017).
26. L. Yong-Qiang, C. Wen-Hui and L. Ling, Microgravity Sci. Technol.,29, 65 (2017).
27. H. Li, G. Zhu, Y. Shen, Z. Han, J. Zhang and J. Li, J. Colloid Interface Sci., 557, 84 (2019).
28. J. Wu, H. Li, X. Lai, Z. Chen and X. Zeng, Ind. Eng. Chem. Res.,58, 8791 (2019).
29. E. Mosayebi, T. Zhao, S. Azizian and D. Zhao, Surf. Interfaces, 27,101464 (2021).
30. K. Li, J. Ju, Z. Xue, J. Ma, L. Feng, S. Gao and L. Jiang, Nat. Commun., 4, 2276 (2013).
31. J. Zhang, L. Liu, Y. Si, S. Zhang, J. Yu and B. Ding, Nanotechnology,32, 495704 (2021).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로