ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 31, 2022
Revised August 6, 2022
Accepted August 24, 2022
Acknowledgements
This study was financially supported by the Key Research and Development Plan Project of Tianjin of China (No. 21YFSNSN00160) and National Natural Science Foundation of China (No. 21407112).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Mechanism of sulfamethoxazole adsorption on wastewater-sludge-based biochar: Sludge type and modification improvement

1School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China 2State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
ykyang@tju.edu.cn, wanghongyang_why@126.com
Korean Journal of Chemical Engineering, May 2023, 40(5), 1094-1102(9), 10.1007/s11814-022-1274-1
downloadDownload PDF

Abstract

With rapid industrialization and population growth, sewage sludge generation has increased worldwide, and it needs to be treated properly. The pyrolysis of sewage sludge into biochar provides sustainable benefits for concomitant pollutant adsorption and waste treatment. Sulfamethoxazole (SMX) antibiotics are highly prevalent in wastewater owing to their widespread utilization and low metabolic rate and removal efficiency during conventional wastewater treatment. Biochar is known to effectively remove pollutants from wastewater. However, the adsorption capacity and mechanism of SMX adsorption onto sludge-based biochar are currently unclear. Therefore, the adsorption behavior of SMX on sludge-based biochar from three sources (raw sludge, compost sludge, and digested sludge) and ZnCl2- modified biochar was investigated. Among the unmodified biochars, raw sludge-based biochar exhibited the highest adsorption capacity, followed by compost sludge-based and digested sludge-based biochar. The pore-forming effect of ZnCl2 application significantly increased the biochar specific surface area, which increased the equilibrium adsorption of SMX from 6.1 mg/g to 49.3 mg/g. The adsorption mechanisms involved electrostatic interactions, pore filling, hydrophobic interactions, hydrogen bonding, and - interactions. The findings of this study demonstrate the development of sewage sludge biochar and its effectiveness for the treatment of antibiotics containing wastewater.

References

1. F. Yu, Y. Li, S. Han and J. Ma, Chemosphere, 153, 365 (2016).
2. T. T. Qin, Z. W. Wang, X. Y. Xie, C. R. Xie, J. M. Zhu and Y. Li,Water Sci. Technol., 76, 3307 (2017).
3. A. L. Batt, S. Kim and D. S. Aga, Chemosphere, 68, 428 (2007).
4. W.-Y. Ouyang, J. Birkigt, H. H. Richnow and L. Adrian, Environ.Sci. Technol., 55, 271 (2021).
5. M. Zhao, X. Ma, X. Liao, S. Cheng, Q. Liu, H. Wang, H. Zheng, X.
Li, X. Luo, J. Zhao, F. Li and B. Xing, Chem. Eng. J., 430, 133092(2022).
6. Y.-B. Zhang, J. Zhou, Q.-M. Xu, J.-S. Cheng, Y.-L. Luo and Y.-J.Yuan, Sci. Total Environ., 565, 547 (2016).
7. Q. Wu, Y. Zhang, M.-h. Cui, H. Liu, H. Liu, Z. Zheng, W. Zheng, C. Zhang and D. Wen, J. Hazard. Mater., 426, 127798 (2022).
8. J. Radjenovic and M. Petrovic, J. Hazard. Mater., 333, 242 (2017).
9. Y. Ma, M. Li, P. Li, L. Yang, L. Wu, F. Gao, X. Qi and Z. Zhang,Bioresour. Technol., 319, 124199 (2021).
10. M. Shabir, M. Yasin, M. Hussain, I. Shafiq, P. Akhter, A.-S. Nizami,B.-H. Jeon and Y.-K. Park, J. Ind. Eng. Chem., 112, 1 (2022).
11. M. Shabir, N. Shezad, I. Shafiq, I. M. Maafa, P. Akhter, K. Azam, A.Ahmed, S. H. Lee, Y.-K. Park and M. Hussain, J. Ind. Eng. Chem.,
105, 539 (2022).
12. M. Inyang and E. Dickenson, Chemosphere, 134, 232 (2015).
13. S. Valizadeh, S. S. Lee, K. Baek, Y. J. Choi, B.-H. Jeon, G. H. Rhee,K.-Y. Andrew Lin and Y.-K. Park, Environ. Res., 200, 111757 (2021).
14. X. N. Law, W. Y. Cheah, K. W. Chew, M. F. Ibrahim, Y.-K. Park, S.-H. Ho and P. L. Show, Environ. Res., 204, 111966 (2022).
15. L. Zhao, F. Yang, Q. Jiang, M. Zhu, Z. Jiang, Y. Tang and Y. Zhang,Environ. Sci. Pollut. Res., 25, 1405 (2018).
16. F. Reguyal, A. K. Sarmah and W. Gao, J. Hazard. Mater., 321, 868(2017).
17. D. G. Kim, D. Choi, S. Cheon, S.-O. Ko, S. Kang and S. Oh, J. Water Process Eng., 33, 101019 (2020).
18. M. T. Sekulic, N. Boskovic, M. Milanovic, N. G. Letic, E. Gligoric and S. Pap, J. Mol. Liq., 284, 372 (2019).
19. M. Qi, Y. Yang, X. Zhang, X. Zhang, M. Wang, W. Zhang, X. Lu and Y. Tong, J. Cleaner Prod., 253, 120003 (2020).
20. L. Yan, Y. Liu, Y. Zhang, S. Liu, C. Wang, W. Chen, C. Liu, Z. Chen and Y. Zhang, Bioresour. Technol., 297, 122381 (2020).
21. J.-Y. Kim, S. Oh and Y.-K. Park, J. Hazard. Mater., 384, 121356 (2020).
22. S. Valizadeh, S. S. Lee, Y. J. Choi, K. Baek, B.-H. Jeon, K.-Y. Andrew Lin and Y.-K. Park, Environ. Res., 213, 113599 (2022).
23. W. Feng, Y. Ye, Z. Lei, C. Feng, C. Wei and S. Chen, Carbon, 134,53 (2018).
24. L. Tang, J. Yu, Y. Pang, G. Zeng, Y. Deng, J. Wang, X. Ren, S. Ye, B. Peng and H. Feng, Chem. Eng. J., 336, 160 (2018).
25. Y. Ma, L. Yang, L. Wu, P. Li, X. Qi, L. He, S. Cui, Y. Ding and Z.Zhang, Sci. Total Environ., 718, 137299 (2020).
26. J. Wan, J. Ding, W. Tan, Y. Gao, S. Sun and C. He, Environ. Sci.Pollut. Res. Int., 27, 13436 (2020).
27. H. Wang, X. Lou, Q. Hu and T. Sun, J. Mol. Liq., 325, 114967 (2021).
28. H. D. Liu, G. R. Xu and G. B. Li, Sci. Total Environ., 747, 141492(2020).
29. Y. Yang, L. Zheng, T. Zhang, H. Yu, Y. Zhan, Y. Yang, H. Zeng, S.Chen and D. Peng, Bioresour. Technol., 288, 121510 (2019).
30. A. Fernandez-Sanroman, V. Acevedo-García, M. Pazos, M. A. Sanromán and E. Rosales, J. Cleaner Prod., 271, 122436 (2020).
31. R. Rashid, I. Shafiq, M. J. Iqbal, M. Shabir, P. Akhter, M. H. Hamayun, A. Ahmed and M. Hussain, J. Environ. Chem. Eng., 9, 105480(2021).
32. Y. Ma, T. Lu, L. Yang, L. Wu, P. Li, J. Tang, Y. Chen, F. Gao, S. Cui,X. Qi and Z. Zhang, Environ. Pollut., 298, 118833 (2022).
33. Y. Ma, T. Lu, J. Tang, P. Li, O. Mašek, L. Yang, L. Wu, L. He, Y.Ding, F. Gao, X. Qi and Z. Zhang, Sep. Purif. Technol., 297, 121426(2022).
34. Z. Zhang, Y. Li, L. Ding, J. Yu, Q. Zhou, Y. Kong and J. Ma, Bioresour. Technol., 330, 124949 (2021).
35. E. Smidt and V. Parravicini, Bioresour. Technol., 100, 1775 (2009).
36. K. Azam, R. Raza, N. Shezad, M. Shabir, W. Yang, N. Ahmad, I.Shafiq, P. Akhter, A. Razzaq and M. Hussain, J. Environ. Chem.Eng., 8, 104220 (2020).
37. V.-T. Nguyen, T.-B. Nguyen, C. P. Huang, C.-W. Chen, X.-T. Bui and C.-D. Dong, J. Water Process Eng., 40, 101908 (2021).
38. X. B. Zhang, Y. C. Zhang, H. H. Ngo, W. S. Guo, H. T. Wen, D.Zhang, C. C. Li and L. Qi, Sci. Total Environ., 716, 137015 (2020).
39. Y. Zhou, Y. He, Y. He, X. Liu, B. Xu, J. Yu, C. Dai, A. Huang, Y.Pang and L. Luo, Sci. Total Environ., 650, 2260 (2019).
40. J. Yan, Y. Xue, L. Long, Y. Zeng and X. Hu, Environ. Sci. Pollut.Res., 25, 34674 (2018).
41. C. Peiris, S. R. Gunatilake, T. E. Mlsna, D. Mohan and M. Vithanage, Bioresour. Technol., 246, 150 (2017).
42. S. Zeng, Y.-K. Choi and E. Kan, Sci. Total Environ., 750, 141691(2021).
43. J. Wei, Y. Liu, J. Li, Y. Zhu, H. Yu and Y. Peng, Chemosphere, 236,124254 (2019).
44. Y. Liu, X. H. Liu, G. D. Zhang, T. Ma, T. Q. Du, Y. Yang, S. Y. Lu and W. L. Wang, Colloids Surf., A, 564, 131 (2019).
45. X. Lin, J. Zhang, X. Luo, C. Zhang and Y. Zhou, Chem. Eng. J.,172, 856 (2011).
46. Y. Ma, P. Li, L. Yang, L. Wu, L. He, F. Gao, X. Qi and Z. Zhang,Ecotoxicol Environ. Saf., 196, 110550 (2020).
47. X. Fan, X. Wang, B. Zhao, J. Wan, J. Tang and X. Guo, J. Environ.Chem. Eng., 10, 107328 (2022).
48. F. Liu, J. Liu, Y. Li, R. Fang and Y. Yang, Energy, 239, 122100 (2022).
49. A. K. De and I. Sinha, J. Phys. Chem. Solids, 167, 110733 (2022).
50. A. R. Altaf, Y. G. Adewuyi, H. Teng, G. Liu and F. Abid, J. Environ.Sci., 122, 150 (2022).
51. X. Cao, Z. Meng, E. Song, X. Sun, X. Hu, L. Wenbin, Z. Liu, S. Gao and B. Song, Chemosphere, 299, 134414 (2022).
52. Q. Wang, Z. Zhang, G. Xu and G. Li, J. Hazard. Mater., 413, 125385(2021).
53. Q. Xu, Q. Zhou, M. Pan and L. Dai, Chem. Eng. J., 382, 122705(2020).
54. F. Li, A. R. Zimmerman, X. Hu and B. Gao, Chemosphere, 260,127610 (2020).
55. Z. Peng, Z. Fan, X. Chen, X. Zhou, Z. F. Gao, S. Deng, S. Wan, X.Lv, Y. Shi and W. Han, Nanomaterials, 12, 2271 (2022).
56. M. B. Ahmed, J. L. Zhou, H. H. Ngo, W. Guo, M. A. H. Johir and D. Belhaj, Bioresour. Technol., 238, 306 (2017).
57. C. E. Rodriguez-Martinez, E. Gutierrez Segura, C. Fall and A. ColinCruz, Desalin. Water Treat., 158, 67 (2019)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로