ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 3, 2022
Revised August 24, 2022
Accepted August 28, 2022
Acknowledgements
This work was financially supported by Office of the Permanent Secretary, Ministry of Higher Education, Science, Research, and Innovation (Thailand) through grant RGNS 63-214 and the new strategic research project (P2P) fiscal year 2022, Walailak University, Thailand.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Ammonia recovery from natural rubber processing wastewater by hollow fiber membrane contactors: Mass transfer in short- and long-term operations and fouling characteristics

1Department of Chemical Engineering and Pharmaceutical Chemistry, School of Engineering and Technology, Walailak University, Tasala, Nakhon Si Thammarat 80161, Thailand 2Biomass and Oil Palm Center of Excellence, Walailak University, Tasala, Nakhon Si Thammarat 80161, Thailand 3The Center for Scientific and Technological Equipment, Walailak University 222 Thai Buri, Tha Sala District, Nakhon Si Thammarat Province 80160 Thailand.0161, Thailand 4Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Toongkru, Bangkok 10140, Thailan 5Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Kore
wichitpan.ro@wu.ac.th
Korean Journal of Chemical Engineering, May 2023, 40(5), 1103-1115(13), 10.1007/s11814-022-1277-y
downloadDownload PDF

Abstract

This study investigates the performance of hydrophobic membrane contactors (HMC) for the recovery of dissolved ammonia (NH3) from natural rubber processing (NRP) wastewater during short- and long-term operation. The results show that 90% recovery of total NH3 nitrogen can be achieved. In the short-term operations, the increases in the wastewater velocity and pH enhanced the NH3 desorption overall mass transfer coefficient (KOV), but the increase in the number of total solids in the wastewater reduced the KOV. The Wilson plot method confirmed the significance of the mass transfer resistance of the wastewater phase for NH3 desorption. The long-term operation revealed that the KOV was kept constant for 15 days and then declined owing to membrane fouling. Flushing using water (physical cleaning) could not restore the KOV to its initial value, but a series of chemical cleanings with 0.1 M NaOH and 0.1 M HCl solution successfully recovered the KOV. The comparison of cleaning solutions in the foulant extraction’s ability showed that 0.1 M NaOH was the most potent, followed by 0.1 M HCl and water. Fouling characterization using scanning electron microscopy and energy dispersive X-ray spectrometry (SEM/EDS) and the Fourier transform infrared spectroscopy revealed a cake layer covering the membrane surface, and the foulants consisted of organic compounds composed of proteins from natural rubber (NR) particles and inorganic salts. The hydrophobic interaction of the proteins covering the NR particles allowed the natural rubber particles to be deposited on the membrane surface, even without hydraulic pressure in HMC. The negative charge of the NR particles could also interact with ions, leading to the formation of inorganic components in the fouling cake layers. Two types of fouled membrane surfaces were identified via SEM/EDS: a smooth area, which consisted of N-atom from proteins, and a rugged area with small conglomerate particles in which no N-atoms were observed.

References

1. FAOSTAT, Countries by commodity (Rubber, natural), https://www.fao.org/faostat/en/#rankings/countries_by_commodity, Access date January 2021.
2. W. Jawjit, C. Kroeze and S. Rattanapan, J. Clean. Prod., 18, 403 (2010).
3. P. Tekasakul and S. Tekasakul, J. Aerosol Sci., 21, 122 (2006).
4. G. Zhu, Y. Peng, B. Li, J. Guo, Q. Yang and S. Wang, Rev. Environ.Contam. Toxicol., 192, 159 (2008).
5. H. J. Al-Jaaf, N. S. Ali, S. M. Alardhi and T. M. Albayati, Desalin.Water Treat., 245, 226 (2022).
6. S. T. Kadhum, G. Y. Alkindi and T. M. Albayati, Desalin. Water Treat., 231, 44 (2021).
7. W. Jawjit, P. Pavasant and C. Kroeze, J. Clean. Prod., 98, 84 (2015).
8. D. Tanikawa, T. Kataoka, Y. Hirakata, M. Hatamoto and T. Yamaguchi, Process Saf. Environ. Protect., 138, 256 (2020).
9. W. Rongwong and K. Goh, J. Environ. Chem. Eng., 8 104242 (2020).
10. A. Gabelman and S. T. Hwang, J. Membr. Sci., 159, 61 (1999).
11. Y. Xu, K. Goh, R. Wang and T. H. Bae, Sep. Purif. Technol., 229 115791 (2019).
12. D. Tanikawa, T. Kataoka, Y. Hirakata, M. Hatamoto and T. Yamaguchi, Process Saf. Environ. Protect., 138, 256 (2020).
13. M. Mohammadi, H. C. Man, M. A. Hassan, P. L. Yee, Afr. J. Biotechnol., 9, 6233 (2010).
14. N. Nasir, Z. Daud, A. A. Kadir, A. A. A. Latiff, B. Ahmad, N. Suhani,
H. Awang, A. A. Oyekanmi and A. A. Halim, Malaysian J. Fundam. Appl. Sci., 15, 862 (2019).
15. A. Masoud Samani Majd and S. Mukhtar, Trans. ASABE, 56, 1951(2013).
16. M. C. Garcia-González and M. B. Vanotti, Waste Manag., 38, 455(2015).
17. M. Fillingham, A. VanderZaag, J. Singh, S. Burtt, A. Crolla, C. Kinsley and J. D. MacDonald, Membranes, 7, 59 (2017).
18. J. Zhang, M. Xie, X. Tong, S. Liu, D. Qu and S. Xiao, Sep. Purif. Technol., 239, 116579 (2020).
19. M. B. Vanotti, P. J. Dube, A. A. Szogi and M. C. García-González Water Res., 112, 137 (2017).
20. F. Wäeger-Baumann and W. Fuchs, Sep. Sci. Technol., 47, 1436(2012).
21. M. J. Rothrock, A. A. Szögi and M. B. Vanotti, Waste Manage., 33,1531 (2013).
22. P. H. Lin, R. Y. Horng, S. F. Hsu, S. S. Chen and C. H. Ho, Int. J.Environ. Res. Public Health, 15, 441 (2018).
23. B. Brennan, J. Lawler and F. Regan, Environ. Sci. Water Res. Technol., 7, 259 (2021).
24. M. C. S. Amaral, N. C. Magalhães, W. G. Moravia and C. D. Ferreira, Water Sci. Technol., 74, 2177 (2016).
25. Federation, Water Environmental, and APH Association. APHA:Washington, DC, USA 21 (2005).
26. S. Khaisri, D. deMontigny, P. Tontiwachwuthikul and R. Jiraratananon, Sep. Sci. Technol., 65, 290 (2009).
27. Florida Department of Environmental Protection, Chemistry Laboratory Methods Manual, Tallahassee, 12 (2001).
28. S. D. Hafner and J. J. Bisogni, Water Res., 43, 4105 (2009).
29. Z. Zhu, Z. Hao, Z. Shen and J. Chen, J. Membr. Sci., 250, 269 (2005).
30. S. N. Ashrafizadeh and Z. Khorasani, Chem. Eng. J., 162, 242 (2010).
31. X. Tan, S. P. Tan, W. K. Teo and K. Li, J. Membr. Sci., 271, 59 (2006).
32. W. Rongwong and S. Sairiam, J. Environ. Chem. Eng., 8, 104240(2020).
33. G. K. Agrahari, S. K. Shukla, N. Verma and P. K. Bhattacharya, J.Membr. Sci., 390-391, 164 (2012).
34. M. C. Yang and E. L. Cussler, AIChE J., 32, 1910 (1986).
35. H. Liu and J. Wang, Prog. Nucl. Energy, 86, 97 (2016).
36. Y. T. Ahn, Y. H. Hwang and H. S. Shin, Water Sci. Technol., 63, 2944(2011).
37. A. D. Visscher, L. A. Harper, P. W. Westerman, Z. Liang, J. Arogo,R. R. Sharpe and O. V. Cleemput, J. Appl. Meteorol. Climatol., 41,426 (2002).
38. V.K. Vaddella, P.M. Ndegwa, J.L. Ullman and A. Jiang, Atmos. Environ., 66, 107 (2013).
39. J. Arogo, P. W. Westerman and Z. S. Liang, Trans ASABE, 46, 1415(2003).
40. S. Hube, M. Eskafi, K. F. Hrafnkelsdóttir, B. Bjarnadóttir, M. Á.Bjarnadóttir, S. Axelsdóttir and B. Wu, Sci. Total Environ., 710,136375 (2020).
41. D. Veerasamy and A. Ismail, Desalination, 286, 235 (2012).
42. M. M. Damtie, B. Kim, Y. C. Woo and J.-S. Choi, Chemosphere,206, 793 (2018).
43. J. Teng, M. Zhang, K. T. Leung, J. Chen, H. Hong, H. Lin and B. Q.Liao, Water Res., 149, 477 (2019).
44. A. Abdel-Karim, S. Leaper, C. Skuse, G. Zaragoza, M. Gryta and P.Gorgojo, Chem. Eng. J., 422, 129696 (2021).
45. Z. Wang, J. Ma, C. Y. Tang, K. Kimura, Q. Wang and X. Han, J.Membr. Sci., 468, 276 (2014).
46. M. Ramezanianpour and M. Sivakumar, Desalination, 345, 1 (2014).
47. M. M. Rippel, C. A. Paula Leite and F. Galembeck, Anal. Chem.,74, 2541 (2002).
48. L. Tarachiwin, J. Sakdapipanich and Y. Tanaka, Rubber Chem. Technol., 76, 1185 (2003).
49. R. Miao, L. Wang, N. Mi, Z. Gao, T. Liu, Y. Lv, X. Wang, X. Meng and Y. Yang, Environ. Sci. Technol., 49, 6574 (2015).
50. F. W. Perrella and A. A. Gaspari, Methods, 27, 77 (2002).
51. W. U. Rehman, A. Muhammad, M. Younas, C. Wu, Y. Hu and J.Li, J. Membr. Sci., 584, 66 (2019).
52. S. Rolere, S. Liengprayoon, L. Vaysse, J. Sainte-Beuve and F. Bonfils, Polym. Test., 43, 83 (2015).
53. MERCK, IR spectrum table & chart, URL: https://www. sigmaaldrich. com/technical-documents/articles/biology/ir-spectrum-table.
html, Access date January 2021 (2020).
54. C. N. Rochette, J. r. m. J. Crassous, M. Drechsler, F. Gaboriaud, M.Eloy, B. de Gaudemaris and J. r. m. F. Duval, Langmuir, 29, 14655(2013).
55. M. Malmsten, Colloids Surf. B Biointerfaces, 3, 297 (1995).
56. M. Sriring, A. Nimpaiboon, S. Kumarn, K. Higaki, Y. Higaki, K.Kojio, A. Takahara, C. C. Ho and J. Sakdapipanich, Colloids Surf.A: Physicochem. Eng. Asp., 592, 124571 (2020).
57. K. Berthelot, S. Lecomte, Y. Estevez, V. Zhendre, S. Henry, J.Thévenot, E. J. Dufourc, I. D. Alves and F. Peruch, Biochim. Biophys. Acta Biomembr., 1838, 287 (2014).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로