Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 20, 2022
Revised July 18, 2022
Accepted July 21, 2022
- Acknowledgements
- This research was supported by the National Research Council of Science & Technology (NST) grant of the Korea Government (MSIP) (No. CAP-18-08-KIMM).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Ozonation of styrene in the flue gas from fiberglass reinforced plastics manufacturing facility: Laboratory and on-site studies
Abstract
Styrene is a typical volatile organic compound (VOC) emitted from various sources that is considered hazardous due to its toxicity and strong odor. Many technologies have been developed to control VOCs, including plasma,
catalytic, and thermal oxidation. In this study, styrene, one of the typical VOCs, was decomposed by ozone (O3) in laboratory and on-site systems. In a laboratory reactor, the styrene conversion efficiency in the reaction was determined
under different temperatures, inlet styrene concentrations, and [O3]/[styrene] mole ratios. The styrene conversion efficiency decreased as the reaction temperature increased and was higher at higher mole ratios. A complete conversion
was obtained in the laboratory system at room temperature, and 58.3% styrene conversion efficiency was achieved in
the on-site system.
References
2. M. J. Kim, Y. K. Seo, J. H. Kim and S. O. Baek, Environ. Sci. Pollut.Res., 27, 28912 (2020).
3. L. Al-Awadi, M. Al-Rashidi, B. Pereira, A. Pillai and A. Khan, Int.J. Environ. Sci. Technol., 16, 2643 (2019).
4. V. T. Nguyen, D. B. Nguyen, I. Heo and Y. S. Mok, Plasma Chem.Plasma Process., 40, 1207 (2020).
5. H. J. Shin, J. C. Kim, S. J. Lee and Y. P. Kim, Environ. Sci. Pollut. Res.,20, 1468 (2013).
6. Y. Ke, R. Liu, X. Chen, Y. Feng, P. Gao, H. Huang, L. Fan and D. Ye,J. Environ. Sci. (China), 104, 296 (2021).
7. Y. K. Park, W. G. Shim, S. C. Jung, H. Y. Jung and S. C. Kim, Korean J. Chem. Eng., 39(1), 161 (2022).
8. C.A. Santos, N.H. Phuong, M.J. Park, S.B. Kim and Y.M. Jo, Korean J. Chem. Eng., 37(1), 120 (2020).
9. K. H. P. Reddy, B. S. Kim, S. S. Lam, S. C. Jung, J. H. Song and Y. K.Park, Environ. Res., 195, 110876 (2021).
10. H. W. Ryu, M. Y. Song, J. S. Park, J. M. Kim, S. C. Jung, J. H. Song,B. J. Kim and Y. K. Park, Environ. Res., 172, 649 (2019).
11. S. Ryu, J. Lee, H. P. Reddy Kannapu, S. H. Jang, Y. Kim, H. Jang,J.M. Ha, S.C. Jung and Y.K. Park, Environ. Res., 191, 110149 (2020).
12. J. Kim, E. E. Kwon, J. E. Lee, S. H. Jang, J. K. Jeon, J. H. Song and Y. K. Park, J. Hazard. Mater., 403, 123934 (2021).
13. J. Kim, J. E. Lee, H. W. Lee, J. K. Jeon, J. H. Song, S. C. Jung, Y. F.Tsang and Y. K. Park, J. Hazard. Mater., 397, 122577 (2020).
14. Q. Ma, X. Lin, C. Yang, B. Long, Y. Gai and W. Zhang, R. Soc. Open Sci., 5, 172171 (2018).
15. K. Na, C. Song and D. R. Cocker, Atmos. Environ., 40, 1889 (2006).
16. Y. S. Son, Y. S. Son, J. H. Park, P. Kim and J. C. Kim, Radiat. Phys.Chem., 81, 686 (2012).
17. K. Kočí, M. Reli, I. Troppová, T. Prostějovský and R. Žebrák, Clean -Soil, Air, Water, 47(8), 1900126 (2019).
18. Y. Díaz-de-Mera, A. Aranda, E. Martínez, A. A. Rodríguez, D.Rodríguez and A. Rodríguez, Atmos. Environ., 171, 25 (2017).
19. H. Zhang, K. Li, T. Sun, J. Jia, X. Yang, Y. Shen, J. Wang and Z. Lou,Res. Chem. Intermed., 39, 1021 (2013).
20. C. Schäfer, C. J. Ellstrom and B. Török, Top. Catal., 61, 643 (2018).
21. H. C. S. Cho, J. R. Byung and G. Kim, J. Korean Soc. Occup. Env.Hyg., 18(4), 310 (2008).
22. T. Banu, K. Sen and A. K. Das, J. Phys. Chem. A, 122, 8377 (2018).
23. A. Shojaei, H. Ghafourian, L. Yadegarian, K. Lari and M. T.Sadatipour, J. Environ. Heal. Sci. Eng., 19, 771 (2021).
24. A. Ikhlaq, S. Waheed, K. S. Joya and M. Kazmi, Catal. Commun.,112, 15 (2018).
25. R. Rashidi, G. Moussavi, A. Khavanin and A. Ghaderpoori, Int. J.Environ. Sci. Technol., 16, 8023 (2019).
26. B. E. Coleman and B. S. Ault, J. Mol. Struct., 1023, 81 (2012).
27. R. Criegee, Angew. Chemie Int. Ed. English, 14(11), 745 (1975).
28. X. Zhang, F. Feng, S. Li, X. Tang, Y. Huang, Z. Liu and K. Yan,Chem. Eng. J., 232, 527 (2013).
29. M. Ghavami, M. Aghbolaghy, J. Soltan and N. Chen, Front. Chem.Sci. Eng., 14(6), 937 (2020).
30. V. Senatore, T. Zarra, G. Oliva, V. Belgiorno and V. Naddeo, Glob.Nest J., 22(2), 143 (2020).
31. J. E. Lee, Y. S. Ok, D. C. W. Tsang, J. H. Song, S. C. Jung and Y. K.Park, Sci. Total Environ., 719, 137405 (2020).
32. E. C. Tuazon, J. Arey, R. Atkinson and S. M. Aschmann, Environ.Sci. Technol., 27, 1832 (1993).
33. M. Alibolandi, J. T. Darian, M. Ghaedian, S. J. Royaee and A.Shafeghat, Korean J. Chem. Eng., 37(11), 1867 (2020).
34. T. Batakliev, V. Georgiev, M. Anachkov, S. Rakovsky and G. E.Zaikov, Interdiscip. Toxicol., 7(2), 47 (2014).
35. Y. Zhang and K. R. Pagilla, Ozone Sci. Eng., 35, 390 (2013).
36. W. Gao, L. Du, P. Li, W. Jiao and Y. Liu, Chem. Eng. Process. - Process Intensif., 158, 108166 (2020)