ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 3, 2022
Revised August 10, 2022
Accepted August 30, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Synergistic degradation of Orange G in water via water surface plasma assisted with -Bi2O3/CaFe2O4

School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
ykang@tju.edu.cn
Korean Journal of Chemical Engineering, May 2023, 40(5), 1122-1132(11), 10.1007/s11814-022-1278-x
downloadDownload PDF

Abstract

A coupling method of water surface plasma (WSP) with -Bi2O3/CaFe2O4 composite was applied to promote the elimination of aqueous Orange G (OG). The morphology, structures, crystal form and chemical bonding state of the prepared -Bi2O3/CaFe2O4 composite were characterized via SEM, TEM, EDS-mapping, XRD, FT-IR and XPS. The results showed that the addition of composites significantly enhanced the degradation and kinetic constant of OG. The degradation efficiency of the combined system containing 8.0 wt% -Bi2O3/CaFe2O4 composite was 28.9% higher compared to the sole WSP for OG degradation. The synergistic factor (2.387) demonstrated that the combined system was able to establish a synergistic effect. The effect including peak voltage, air flow rate, initial conductivity and initial concentration of solution on OG removal was inspected. The active species trapping experiments demonstrated ·OH, h+ , ·O2  and high-energy electrons devoted to OG removal in the combined system. O3 and H2O2 were also involved in the OG removal in the combined system. Three-dimensional fluorescence spectroscopy and liquid chromatography-mass spectrometry were tested to investigate the mechanism of OG degradation. Finally, the combined system in the present study was compared with other competitive technologies for the degradation of OG in the literatu

References

1. M. Caldera-Villalobos, A. A. Pelaez-Cid, M. A. Martins-Alho and A. M. Herrera-Gonzalez, Korean J. Chem. Eng., 35, 2394 (2018).
2. S. Singh, R. Sharma and M. Khanuja, Korean J. Chem. Eng., 35,1955 (2018).
3. A. Ajmal, I. Majeed, R. N. Malik, H. Idriss and M. A. Nadeem, RSC Adv., 4, 37003 (2014).
4. R. Zhang, Q. H. He, Y. Huang and X. T. Wang, Arch. Biochem. Biophys., 596, 1 (2016).
5. J. W. Yoon, M. H. Baek, J. S. Hong, C. Y. Lee and J. K. Suh, Korean J. Chem. Eng., 29, 1722 (2012).
6. A. R. Rahmani, K. Godini, D. Nematollahi, G. Azarian and S.Maleki, Korean J. Chem. Eng., 33, 532 (2016).
7. C. G. Joseph, Y. H. Taufiq-Yap, N. A. Affandi, J. L. H. Nga and V.Vijayan, Korean J. Chem. Eng., 39, 484 (2022).
8. K. F. Shang, J. Y. Ren, Q. Zhang, N. Lu, N. Jiang and J. Li, J. Environ. Chem. Eng., 9, 105767 (2021).
9. W. J. Hua and Y. Kang, Sep. Purif. Technol., 279, 119691 (2021).
10. Y. S. Mok and J. O. Jo, Korean J. Chem. Eng., 24, 607 (2007).
11. B. Jiang, J. T. Zheng, Q. Liu and M. B. Wu, Chem. Eng. J., 204-206,32 (2012).
12. K. F. Shang, J. Li, X. J. Wang, D. Yao, N. Lu, N. Jiang and Y. Wu,Jpn. J. Appl. Phys., 55, 01AB02 (2015).
13. J. Jose and L. Philip, J. Environ. Sci., 101, 382 (2021).
14. M. Sato, T. Tokutake, T. Ohshima and A. T. Sugiarto, IEEE Trans.Ind. Appl., 44, 1397 (2008).
15. D. Luo and Y. Kang, J. Mater. Sci., 54, 1549 (2019).
16. X. D. Tang, Z. R. Wang, N. Wu, S. L. Liu and N. Liu, Catal. Commun., 119, 119 (2019).
17. S. Q. Han, J. Li, K. L. Yang and J. Lin, Chin. J. Catal., 36, 2119(2015).
18. D. Luo and Y. Kang, Mater. Lett., 225, 17 (2018).
19. S. Vadivel, D. Maruthamani, A. Habibi-Yangjeh, B. Paul, S. S. Dhar and K. Selvam, J. Colloid Interface Sci., 480, 126 (2016).
20. M. G. Ahmed, T. A. Kandiel, A. Y. Ahmed, I. Kretschmer, F. Rashwan and D. Bahnemann, J. Phys. Chem. C, 119, 5864 (2015).
21. H. Y. Jiang, P. Li, G. G. Liu, J. H. Ye and J. Lin, J. Mater. Chem. A, 3,5119 (2015).
22. J. Kim, C.W. Lee and W. Choi, Environ. Sci. Technol., 44, 6849 (2010).
23. K. F. Shang, J. Li and R. Morent, Plasma Sci. Technol., 21, 043001(2019).
24. H. Akiyama and M. Akiyama, IEEJ Trans. Electr. Electron. Eng., 16,6 (2021).
25. P. Hoffer, Y. Sugiyama, S. H. R. Hosseini, H. Akiyama, P. Lukes and M. Akiyama, J. Phys. D-Appl. Phys., 49, 415202 (2016).
26. Ruma, H. Hosano, T. Sakugawa and H. Akiyama, Catalysts, 8, 213(2018).
27. H. Bader and J. Hoigné, Water Res., 15, 449 (1981).
28. R. M. Sellers, Analyst, 105, 950 (1980).
29. W. J. Sang, W. Lu, L. J. Mei, D. N. Jia, C. Cao, Q. Li, C. Wang, C.Zhan and M. Li, Sep. Purif. Technol., 277, 119473 (2021).
30. K. K. Bera, R. Majumdar, M. Chakraborty and S. K. Bhattacharya,J. Hazard. Mater., 352, 182 (2018).
31. R. P. Hu, X. Xiao, S. H. Tu, X. X. Zuo and J. M. Nan, Appl. Catal.,B, 163, 510 (2015).
32. V. H. Nguyen, M. Mousavi, J. B. Ghasemi, Q. Van Le, S. A. Delbari,A. S. Namini, M. S. Asl, M. Shokouhimehr and M. Mohammadi,J. Phys. Chem. C, 124, 27519 (2020).
33. F. Kargar, A. Bemani, M. H. Sayadi and N. Ahmadpour, J. Photochem. Photobiol., A, 419, 113453 (2021).
34. L. Khanna and N. K. Verma, Phys. B, 427, 68 (2013).
35. H. Guo, Y. W. Wang, X. Yao, Y. T. Zhang, Z. Li, S. J. Pan, J. G. Han,L. J. Xu, W. C. Qiao, J. Li and H. J. Wang, Chem. Eng. J., 425, 130614(2021).
36. M. A. Malik, A. Ghaffar and S. A. Malik, Plasma Sources Sci. Technol., 10, 82 (2001).
37. B. Jiang, J. T. Zheng, S. Qiu, M. B. Wu, Q. H. Zhang, Z. F. Yan and Q. Z. Xue, Chem. Eng. J., 236, 348 (2014).
38. H. Guo, Z. Li, L. R. Xiang, N. Jiang, Y. Zhang, H. J. Wang and J. Li,J. Hazard. Mater., 403, 123673 (2021).
39. H. Guo, N. Jiang, H. J. Wang, N. Lu, K. F. Shang, J. Li and Y. Wu, J.Hazard. Mater., 371, 666 (2019).
40. F. Bilea, C. Bradu, N. B. Mandache and M. Magureanu, Chemosphere, 236, 124302 (2019).
41. R. K. Singh, V. Babu, L. Philip and S. Ramanujam, J. Water Process Eng., 11, 118 (2016).
42. K. L. Sun, D. Yuan, Y. Liu, Y. Son, Z. Q. Sun and R. T. Liu, Sep. Sci.Technol., 55, 3175 (2020).
43. M. A. Meetani, M. A. Rauf, S. Hisaindee, A. Khaleel, A. AlZamly and A. Ahmad, RSC Adv., 1, 490 (2011).
44. M. Q. Cai, M. C. Jin and L. K. Weavers, Ultrason. Sonochem., 18,1068 (2011).
45. J. Zhang, M. Y. Chen and L. Zhu, RSC Adv., 6, 758 (2016).
46. R. Y. Zhao, Y. M. Wang, J. Li, W. H. Meng, C. L. Yang, C. X. Sun and X. F. Lan, J. Appl. Electrochem., 52, 573 (2022).
47. J. Madhavan, F. Grieser and M. Ashokkumar, Ultrason. Sonochem.,17, 338 (2010).
48. J. H. Park, J. J. Wang, R. Xiao, N. Tafti, R. D. DeLaune and D. C.Seo, Bioresour. Technol., 249, 368 (2018).
49. A. Rajini, M. Nookaraju, S. Chirra, A. K. Adepu and N. Venkatathri, RSC Adv., 5, 106509 (2015).
50. Z. Barzgari, A. Ghazizadeh and S. Z. Askari, Res. Chem. Intermed.,42, 4303 (2016).
51. X. M. Lin, Y. W. Ma, J. Q. Wan, Y. Wang and Y. T. Li, Chemosphere,214, 642 (2019).
52. J. B. Tarkwa, E. Acayanka, B. Jiang, N. Oturan, G. Y. Kamgang, S.Laminsi and M. A. Oturan, Appl. Catal., B, 246, 211 (2019).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로