Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 12, 2022
Revised November 21, 2022
Accepted December 5, 2022
- Acknowledgements
- This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Government of Korea (MSIT) (Grant Number: 2021R1A2C1003186).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Development of an ultrasound-negative pressure cavitation fractional precipitation for the purification of (+)-dihydromyricetin from biomass
Abstract
An ultrasound-negative pressure cavitation fractional precipitation method was developed to efficiently
purify (+)-dihydromyricetin. The precipitation efficiency of the developed method was significantly higher than that of
the ultrasound- and negative pressure-fractional precipitation methods. In particular, under an ultrasonic power of 180
to 250 W and a negative pressure intensity of 200 mmHg, highly pure (+)-dihydromyricetin could be obtained with a
high yield of up to 97.56% in only one minute of precipitation. Kinetic analysis results showed that when both ultrasound and negative pressure were introduced during fractional precipitation, the rate constant increased by 1.4 to 7.1
times compared to the conventional fractional precipitation, and the activation energy decreased by 1,299 to 4,550 J/
mol. In addition, the particle size of the precipitate was reduced by 1.9 to 4.0 times, and the diffusion coefficient
increased by 2.3 to 5.0 times.
Keywords
References
2. Y. Xiong, G.-H. Zhu, Y.-N. Zhang, Q. Hu, H.-N. Wang, H.-N. Yu,X.-Y. Qin, X.-Q. Guan, Y.-W. Xiang, H. Tang and G.-B. Ge, Int. J.Biol. Macromol., 187, 976 (2021).
3. S. B. Ji and J. H. Kim, Korean J. Chem. Eng. Res., 56, 370 (2018).
4. A. J. Al Omran, A. S. Shao, S. Watanabe, Z. Zhang, J. Zhang, C. Xue,
J. Watanabe, D. L. Davies, X. M. Shao and J. Liang, J. Neuroinflammation, 19, 2 (2022).
5. Q. Du, W. Cai, M. Xia and Y. Ito, J. Chromatogr. A, 973, 217 (2002).
6. M. Yohsikawa and T. Murakami, Chem. Pharm. Bull., 44, 1736(1996).
7. Premium market, Global dihydroquercetin market to settle at 5.6% growth rate by 2021-27, https://www.marketpremiumpost.com/
2021/11/08/global-dihydroquercetin-market-to-settle-t-5-6-growthrate-by-2021-27 (2021).
8. K. H. Lee and J. H. Kim, Biotechnol. Bioprocess Eng., 13, 274 (2008).
9. M. K. Lim and J. H. Kim, Korean J. Microbiol. Biotechnol., 42, 25(2014).
10. S. R. Oh and J. H. Kim, Korean J. Chem. Eng., 38, 480 (2021).
11. H. S. Min and J. H. Kim, Korean J. Chem. Eng., 39, 58 (2022).
12. J. Hong and J. H. Kim, Korean J. Chem. Eng., In press (2022).
13. S. V. Dalvi and M. D. Yadav, Ultrason. Sonochem., 24, 114 (2015).
14. Z. Tan, Q. Li, C. Wang, W. Zhou, Y. Yang, H. Wang, Y. Yi and F. Li,Molecules, 22, 1483 (2017).
15. S. Miyamoto and K. Shimono, Molecules, 25, 5340 (2020).
16. H. J. Kang and J. H. Kim, Biotechnol. Bioprocess Eng., 36, 86 (2020).
17. H. S. Min, H. G. Kim and J. H. Kim, Korean J. Chem. Eng., 39, 398(2022).
18. H. J. Kang and J. H. Kim. Process Biochem., 99, 316 (2020).
19. P. Khadka, J. Ro, H. Kim, I. Kim, J. T. Kim, H. Kim, J. M. Cho, G.Yun and J. Lee, Asian J. Pharm. Sci., 9, 304 (2014).
20. E. B. Cho, W. K. Cho, K. H. Cha and J. S. Park, Int. J. Pharm., 396,91 (2010).
21. B. W. Zeiger and K. S. Suslick, J. Am. Chem. Soc., 133, 14530 (2011).
22. D. Ma, J. S. Marshall and J. Wu, J. Acoust. Soc. Am., 114, 3496 (2018).
23. N. T. K. Thanh, N. Maclean and S. Mahiddine, Chem. Rev., 114,7610 (2014)