Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 9, 2022
Revised September 18, 2022
Accepted September 23, 2022
- Acknowledgements
- The authors are very thankful for the encouragement given by the Indian Institute of Technology (Banaras Hindu University), Varanasi, and for the financial assistance furnished by the Ministry of Human Resource Development (MHRD), Government of India, for carrying out this present work.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Experimental, modeling and RSM optimization of CO2 loading for an aqueous blend of diethylenetriamine and 3-dimethyl amino-1-propanol
Abstract
Post-combustion CO2 capture by aqueous amine solvent is one of the most promising methods for mitigating the presence of CO2 in the environment. In this work, a novel amine blend of Diethylenetriamine and 3-Dimethyl amino-1-propanol was selected. Experiments were performed in the temperature range of 293.15-323.25 K, mole fraction of diethylenetriamine in the range of 0.05-0.2, partial pressure of CO2 in the range of 10.13-25.33 kPa and solution concentration in the range of 1-3 mol·L1 . Effects of these parameters on equilibrium CO2 loading were judged at various operating conditions. An empirical model was developed for the calculation of equilibrium CO2 loading in the aqueous amine blend. The heat of absorption of CO2 for this amine blend was found to be 65.22 kJ∙mol1 . Response surface methodology (RSM) was used for optimization and a quadratic model was selected. The analysis of variance was used to prove the significance of the selected model. Three-dimensional diagrams and contour plots of independent variables were also shown. Optimum CO2 loading by RSM was found to be 1.068 mol CO2∙mol amine1 at temperature 294.15 K,
Keywords
References
2. M. Zaman and J. H. Lee, Korean J. Chem. Eng., 30, 1497 (2013).
3. A. A. Olajire, Energy, 35, 2610 (2010).
4. J. Zhang, O. Nwani, Y. Tan and D. W. Agar, Chem. Eng. Res. Des.,89, 1190 (2011).
5. A. Gautam and M. K. Mondal, Fuel, 331, 125864 (2023).
6. J. Zhang, Y. Qiao, W. Wang, R. Misch, K. Hussain and D. W. Agar,Energy Procedia, 37, 1254 (2013).
7. A. Mukhtar, S. Saqib, N. B. Mellon, M. Babar, S. Rafiq, S. Ullah,M. A. Bustam, A. G. Al-Sehemi, N. Muhammad and M. Chawla,J. Nat. Gas Sci. Eng., 77, 103203 (2020).
8. M. H. Youn, K. T. Park, Y. H. Lee, S. P. Kang, S. M. Lee, S. S. Kim,Y. E. Kim, Y. N. Ko, S. K. Jeong and W. Lee, J. CO2 Util., 34, 325(2019).
9. I. Ghiat, F. Mahmood, R. Govindan and T. Al-Ansari, Energy Convers.Manag., 228, 113668 (2021).
10. M. Bailera, P. Lisbona, B. Peña and L. M. Romeo, J. CO2 Util., 46,101456 (2021).
11. P. Bains, P. Psarras and J. Wilcox, Prog. Energ. Combust., 63, 146(2017).
12. M. C. Romano, R. Anantharaman, A. Arasto, D. C. Ozcan, H. Ahn,J. W. Dijkstra, M. Carbo and D. Boavida, Energy Procedia, 37, 7176(2013).
13. M. Kanniche, R. Gros-Bonnivard, P. Jaud, J. Valle-Marcos, J. M.Amann and C. Bouallou, Appl. Therm. Eng., 30, 53 (2010).
14. N. Zhong, H. Liu, X. Luo, M. J. AL-Marri, A. Benamor, R. Idem, P.Tontiwachwuthikul and Z. Liang, Ind. Eng. Chem. Res., 55, 7307(2016).
15. C. Li, H. Liu, M. Xiao, X. Luo, H. Gao and Z. Liang, Int. J. Greenh.Gas Control, 63, 77 (2017).
16. O. D. Araújo and J. L. de Medeiros, Curr. Opin.Chem. Eng., 17, 22(2017).
17. M. Afkhamipour, M. Mofarahi and C. H. Lee, Fluid Phase Equilib.,473, 50 (2018).
18. B. Liu, M. Zhang, X. Yang and T. Wang, J. Taiwan Inst. Chem. Eng.,103, 67 (2019).
19. L. H. Lee, K. Im, S. Han, S. J. Yoo, J. Kim and J. H. Kim, Sep. Purif.Technol., 250, 117065 (2020).
20. K. Fu, G. Chen, T. Sema, X. Zhang, Z. Liang, R. Idem and P. Tontiwachwuthikul, Chem. Eng. Sci., 100, 195 (2013).
21. W. L. Theo, J. S. Lim, H. Hashim, A. A. Mustaffa and W. S. Ho,Appl. Energy, 183, 1633 (2016).
22. S. K. Wai, C. Nwaoha, C. Saiwan, R. Idem and T. Supap, Sep. Purif.Technol., 194, 89 (2018).
23. X. Zhang, K. Fu, Z. Liang, W. Rongwong, Z. Yang, R. Idem and P.Tontiwachwuthikul, Fuel, 136, 261 (2014).
24. C. Nwaoha, C. Saiwan, T. Supap, R. Idem, P. Tontiwachwuthikul,W. Rongwong, M. J. Al-Marri and A. Benamor, Int. J. Greenh. Gas Control, 53, 292 (2016).
25. S. Kumar, R. Padhan and M. K. Mondal, J. Chem. Eng. Data, 65,523 (2020).
26. A. Wilk, L. Wieclaw-solny, A. Tatarczuk, A. Krotki, T. Spietz and T.Chwola, Korean J. Chem. Eng., 34, 2275 (2017).
27. A. Hartono, E. F. da Silva and H. F. Svendsen, Chem. Eng. Sci., 64,3205 (2009).
28. A. Hartono, K. A. Hoff, T. Mejdell and H. F. Svendsen, Energy Pro-cedia, 4, 179 (2011).
29. K. A. Doyle, L. J. Murphy, Z. A. Paula, M. A. Land, K. N. Robertson and J. A. C. Clyburne, Ind. Eng. Chem. Res., 54, 8829 (2015).
30. M. Sheng, C. Xie, X. Zeng, B. Sun, L. Zhang, G. Chu, Y. Luo, J. F.Chen and H. Zou, Fuel, 234, 1518 (2018).
31. L. Liu, X. Li, Z. Zhang, L. Li, Y. Bi and L. Zhang, Greenh. Gases:Sci. Technol., 9, 349 (2019).
32. A. V. Rayer and A. Henni, Ind. Eng. Chem. Res., 53, 4953 (2014).
33. Z. Idris, J. Chen and D. A. Eimer, J. Chem. Thermodyn., 97, 282(2016).
34. T. W. Wu, Y. T. Hung, M. T. Chen and C. S. Tan, Sep. Purif. Technol., 186, 309 (2017).
35. S. Kadiwala, A. V. Rayer and A. Henni, Chem. Eng. J., 179, 262(2012).
36. I. M. Bernhardsen and H. K. Knuutila, Chem. Eng. Sci. X, 3, 100032(2019).
37. D. Nath and A. Henni, Ind. Eng. Chem. Res., 59, 14625 (2020).
38. S. Singh, D. Pandey and M. K. Mondal, J. Chem. Eng. Data, 66,740 (2021).
39. A. Belabbaci, N. C. B. Ahmed, I. Mokbel and L. Negadi, J. Chem.Thermodyn., 42, 1158 (2010).
40. A. Nuchitprasittichai and S. Cremaschi, Ind. Eng. Chem. Res., 52,10236 (2013).
41. S. Garcia, M. V. Gil, C. F. Martín, J. J. Pis, F. Rubiera and C. Pevida,Chem. Eng. J., 171, 549 (2011).
42. Q. Tang, Y. B. Lau, S. Hu, W. Yan, Y. Yang and T. Chen, Chem.Eng. J., 156, 423 (2010).
43. S. Sahraie, H. Rashidi and P. Valeh-e-Sheyda, Process Saf. Environ.,122, 161 (2019).
44. A. Hemmati and H. Rashidi, Process Saf. Environ., 121, 77 (2019).
45. A. Nuchitprasittichai and S. Cremaschi, Comput. Chem. Eng., 35,1521 (2011).
46. M. V. Gil, M. Martínez, S. Garcia, F. Rubiera, J. J. Pis and C. Pevida, Fuel Process Technol., 106, 55 (2013).
47. C. Song, Y. Kitamura and S. Li, J. Taiwan Inst. Chem. Eng., 45,1666 (2014).
48. D. Das and B. C. Meikap, J. Environ. Sci. Health A, 52, 1164 (2017).
49. M. Saeidi, A. Ghaemi, K. Tahvildari and P. Derakhshi, J. Chin.Chem. Soc., 65, 1465 (2018).
50. A. Hemmati, H. Rashidi, A. Hemmati and A. Kazemi, J. Nat. Gas Sci. Eng., 62, 101 (2019).
51. P. Asgarifard, M. Rahimi and N. Tafreshi, J. Chem. Eng., 99, 601(2021).
52. F. Y. Jou, F. D. Otto and A. E. Mather, Ind. Eng. Chem. Res., 33,2002 (1994).
53. J. H. Choi, Y. E. Kim, S. C. Nam, S. H. Yun, Y. I. Yoon and J. H. Lee,Korean J. Chem. Eng., 33, 3222 (2016).
54. K. P. Shen and M. H. Li, J. Chem. Eng. Data, 37, 96 (1992).
55. J. Lee, Y. K. Hong and J. K. You, Korean J. Chem. Eng., 34, 1840(2017).
56. M. Kundu and S. S. Bandyopadhyay, Fluid Phase Equilib., 248, 158(2006).
57. A. Bajpai and M. K. Mondal, J. Chem. Eng. Data, 58, 1490 (2013).
58. S. Kumar and M. K. Mondal, Korean J. Chem. Eng., 35(6), 1335(2018).
59. H. Gao, Z. Wu, H. Liu, X. Luo and Z. Liang, Energ. Fuel, 31, 13883(2017).
60. J. I. Lee, F. D. Otto and A. E. Mather, J. Chem. Eng. Data, 17, 465(1972).
61. S. W. Rho, K. P. Yoo, L. S. Lee, S. C. Nam, J. E. Son and B. M. Min,J. Chem. Eng. Data, 42, 1161 (1997)