ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 30, 2022
Revised December 2, 2022
Accepted December 4, 2022
Acknowledgements
The financial support by Abu Dhabi Department of Education and Knowledge (ADEK) through grant no. AARE18-019 to Ioannis Zuburtikudis of Abu Dhabi University is greatly acknowledged. The authors are thankful to Prof. Hussain Alawadhi's group at University of Sharjah, UAE for providing facilities to record Raman spectra of GO and IL-GO
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Ionic liquid functionalized graphene oxide for the adsorption of Ca2+ and Mg2+ ions from saline aqueous feed

1Chemical Engineering Department, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, U.A.E 2Center for Membrane and Advanced Water Technology, Khalifa University, P.O. Box 127788, Abu Dhabi, U.A.E.
ioannis.zuburtikudis@adu.ac.ae
Korean Journal of Chemical Engineering, May 2023, 40(5), 1176-1185(10), 10.1007/s11814-022-1365-z
downloadDownload PDF

Abstract

The development of an efficient adsorbent for removal of Ca2+ and Mg2+ ions using ionic liquid (IL) (1- Ethyl-3-methylimidazolium amino acetate) functionalized graphene oxide (GO) (IL-GO) is reported. The formation of IL-GO adsorbent was confirmed by FTIR, Raman, TGA, TEM and SEM-EDX analysis. The loading of IL within the IL-GO adsorbent was found to be 39 wt%. A minimum amount of IL (~2%) leached from IL-GO after continuous stirring in DI water for 24 h. The IL-GO adsorbent exhibited high adsorption capacity towards Ca2+ and Mg2+ ions and stable recovery without cross-contamination of the feed water. The structural integrity of IL-GO was preserved after functionalization and adsorption of Ca2+ and Mg2+ from aqueous solution. Adsorption kinetics results show that the adsorption rates of Ca2+ and Mg2+ follow a pseudo second-order kinetic model. Moreover, the adsorption data of both Ca2+ and Mg2+ on IL-GO is well fitted using the Langmuir isotherm, implying that active sites for adsorption are homogeneously distributed on the IL-GO surface. IL-GO adsorbent shows promise in the removal of Ca2+ and Mg2+ ions from saline water, as part of a pretreatment process in reverse osmosis (RO) desalination plants, to control the inorganic fouling of RO membranes. Finally, since the adsorption capacity of IL-GO for Ca2+ and Mg2+ has been found to be much greater than that for Na+ , the developed adsorbent could be a very good candidate for the separation of monovalent and divalent cations from an aqueous fee

References

1. C. Q. Sun, Y. Sun, Y. G. Nie, Y. Wang, J. S. Pan, G. Ouyang, L. K.Pan and Z. Sun, J. Phys. Chem. C, 113, 16464 (2009).
2. P. Bradder, S. K. Ling, S. Wang and S. Liu, J. Chem. Eng. Data, 56,138 (2010).
3. S. Stankovich, R. D. Piner, S. B. T. Nguyen and R. S. Ruoff, Carbon,44, 3342 (2006).
4. K. Yang, B. Chen, X. Zhu and B. Xing, Environ. Sci. Technol., 50,11066 (2016).
5. F. Baskoro, C. B. Wong, S. R. Kumar, C. W. Chang, C. H. Chen,D. W. Chen and S. J. Lue, J. Membr. Sci., 554, 253 (2018).
6. A. Abusharkh, Solubility of NaCl, MgCl2 and CaCl2 in different ionic liquids (2015).
7. A. Terracciano, J. Zhang, C. Christodoulatos, F. Wu and X. Meng,J. Environ. Sci., 57, 8 (2017).
8. J. Shang, Y. Guo, D. He, W. Qu, Y. Tang, L. Zhou and R. Zhu, J.Hazard. Mater., 416, 125706 (2021).
9. L. Hou, C. Yang, X. Rao, L. Hu, Y. Bao, Y. Gao and X. Zhu, Colloids Surf. A Physicochem. Eng. Asp., 625, 126949 (2021).
10. R. Valavala, J. Sohn, J. Han, N. Her and Y. Yoon, Eng. Res., 16, 205(2011).
11. R. Y. Ning, Reverse Osmosis Chemistry — Basics, Barriers andBreakthroughs, Desalination Updates. (2015). https://doi.org/10.5772/60208.
12. A. Alkhatib, M. A. Ayari and A. H. Hawari, Chem. Eng. Process., 167,108517 (2021).
13. A. Ouadi, B. Gadenne, P. Hesemann, J. J. E. Moreau, I. Billard, C.Gaillard, S. Mekki and G. Moutiers, Chem. Europ. J., 12, 3074(2006).
14. C. H. C. Janssen, M. C. Kroon, S. J. Metz, J. van Spronsen and G. J.Witkamp, J. Chem. Eng. Data, 55, 3391 (2010).
15. L. Gholami-Bonabi, N. Ziaefar and H. Sheikhloie, Water Sci. Technol., 81, 228 (2020).
16. H. Wang and Y. Wei, RSC Adv., 7, 9079 (2017).
17. H. Yang, F. Li, C. Shan, D. Han, Q. Zhang, L. Niu and A. Ivaska, J.Mater. Chem., 19 (2009).
18. D. Han and K. H. Row, Molecules, 15, 2405 (2010).
19. J. Chen, B. Yao, C. Li and G. Shi, Carbon, 64, 225 (2013).
20. C. Garkoti, J. Shabir, P. Gupta, M. Sharma and S. Mozumdar, New J. Chem., 41 (2017).
21. H. Yang, C. Shan, F. Li, D. Han, Q. Zhang and L. Niu, Chem. Commun., 3880 (2009).
22. D. R. Dreyer, S. Park, C. W. Bielawski and R. S. Ruoff, Chem. Soc.Rev., 39, 228 (2009).
23. N. R. Dhumal, H. J. Kim and J. Kiefer, J. Phys. Chem. A., 113, 10397(2009).
24. M. Fitzpatrick, P. Champagne and M. F. Cunningham, Carbohydr.Polym., 87, 1124 (2012).
25. J. H. Kim, G. H. Shim, T. T. N. Vo, B. Kweon, K. M. Kim and H. S.Ahn, RSC Adv., 11, 3645 (2021).
26. S. Prusty, K. Pal, D. Bera, A. Paul, M. Mukherjee, F. Khan, A. Dey and S. Das, Colloids Surf. B., 203, 111729 (2021).
27. V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim,K. C. Kemp, P. Hobza, R. Zboril and K. S. Kim, Chem. Rev., 112,6156 (2012).
28. P. Pirkwieser, J. A. Lopez-Lopez, W. Kandioller, B. K. Keppler, C.Moreno and F. Jirsa, Front. Chem., 6, 172 (2018).
29. W. Wu, J. Wang, J. Liu, P. Chen, H. Zhang and J. Huang, Int. J.Hydrog. Energy, 42, 11400 (2017).
30. I. H. Alsohaimi, S. M. Wabaidur, M. Kumar, M. A. Khan, Z. A. Alothman and M. A. Abdalla, Chem. Eng. J., 270, 9 (2015).
31. F. O. Nwosu, B. I. Olu-Owolabi and K. O. Adebowale, Curr. Res.Chem., 4(2), 26 (2012).
32. S. Prakash, M. Kumar, B. P. Tripathi and V. K. Shahi, Chem. Eng. J.,162, 28 (2010).
33. W. Plazinski and W. Rudzinski, Langmuir, 25, 298 (2009).
34. X. Zhou, Y. Zhang, Z. Huang, D. Lu, A. Zhu and G. Shi, Sci. Rep.,6, 38417 (2016).
35. Q. Kong, S. Preis, L. Li, P. Luo, C. Wei, Z. Li, Y. Hu and C. Wei,Sep. Purif. Technol., 232, 115956 (2020).
36. J. C. Ma and D. A. Dougherty, Chem. Rev., 97, 1303 (1997).
37. B. Tansel, J. Sager, T. Rector, J. Garland, R. F. Strayer, L. Levine, M.Roberts, M. Hummerick and J. Bauer, Sep. Purif. Technol., 51, 40(2006).
38. D. Gu and J. B. Fein, Colloids Surf. A Physicochem. Eng. Asp., 481,
319 (2015).39. Y. Du, X. Zhang, J. Yang, Y. Lv, C. Zhang and Z. K. Xu, J. Membr.Sci., 595, 117586 (2020).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로