Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 27, 2022
Revised September 18, 2022
Accepted September 23, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Synergistic impact of multiwalled carbon nanotubes on the properties of Ni-Mo thin-film via electrodeposition technique
Abstract
Carbon nanotubes (CNTs) are the hardest and strongest materials due to their perfect mechanical properties and excellent chemical, electrical, and thermal characteristics. Therefore, CNTs are attractive candidates for the
development of innovative multifunctional nanocomposites. The goal of the study was to synthesize and characterize
NiMoCNT nanocomposite coatings onto steel substrates by electrodeposition technique to enhance the properties of
the NiMo layer coating. The electrodeposition was carried out galvanostatically, and the percentage of MWCNT (wt%)
in the composites was investigated under various working circumstances, including current density, pH, temperature,
and CNTs concentration in the electroplating bath. Different techniques, such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray analysis (EDS) ,were used for the composite characterization.
Moreover, the corrosion resistance and the nanocomposites' mechanical characteristics were investigated. The results of
the NiMo alloy show that the enhancement in current density decreases the Mo content from 41.8 wt% (at 3.5×102
Acm2
) to 31.06 wt% (at 6.5×102 Acm2
). On the other hand, the results proved that as the concentration of CNTs in
the bath increases, the wt% of CNTs co-deposited in the NiMo matrix enhances, peaking at 22.36 wt% at 0.03 gL1
.
Furthermore, the findings show that the Mo content of the coating is reduced when CNTs are present. In comparison
to a NiMo coating without CNTs, the composite incorporating CNTs exhibits better corrosion resistance. In addition,
the mechanical properties show that the microhardness of NiMoCNT composite-coated steel is better than that of
NiMo, and the highest microhardness of NiMoCNT composite coated steel was 4.69 GPa, while pure NiMo coated
steel had a microhardness of 2.37 GPa.
References
2. Z. Yang, H. Xu, Y. L. Shi, M. K. Li, Y. Huang and H. L. Li, Mater.Res. Bull., 40(6), 1001 (2005).
3. L. Shi, C. F. Sun, P. Gao, F. Zhou and W. M. Liu, Surf. Coat. Technol., 200(16-17), 4870 (2006).
4. C. Guo, Y. Zuo, X. Zhao, J. Zhao and J. Xiong, Surf. Coat. Technol.,201(24), 9491 (2007).
5. W. Fan, Graphene-carbon nanotube hybrids for energy and environmental applications-springer briefs in molecular science, Springer
Verlag, Singapore (2017).
6. V. N. Popov, Mater. Sci. Eng. R Rep., 43(3), 61 (2004).
7. A. Wang, X. Chen, L. Cheng, X. Shen, W. Zhu, L. Lia and J. Pang,J. Mater. Chem. A, 8(34), 17621 (2020).
8. S. S. Karade, A. S. Nimbalkar, J. H. Eum and H. Kim, RSC Adv.,10(66), 40092 (2020).
9. A. Zarebidaki and S. R. Allahkaram, J. Alloys Compd., 509(5), 1836(2011).
10. A. Esawi and K. Morsi, Compos. Part A Appl. Sci. Manuf., 38(2),646 (2007).
11. S. Tailor, R. Mohanty and P. Soni, J. Mater. Sci. Surf. Eng., 1(1), 15(2013).
12. J. Martinsen, R. A. Figat and M. W. Shafer, MRS Online Proc. Library,32, 145 (1984).
13. Z. A. Hamid and R. A. El-Adly, Plat. Surf. Finish., 86(5), 136 (1999).
14. Z. A. Hamid, Surf. Interface Anal., 35(6), 496 (2003).
15. A. R. Barron and M. R. Khan, Adv. Mater. Process., 166(10), 41(2008).
16. Z. Abdel Hamid, M. Refai, R. M. El-kilani and G. E. M. Nasr, J.Mater. Sci., 56(25), 14096 (2021).
17. M. Refai, Z. Abdel Hamid, R. M. El-kilani and G. E. M. Nasr, J.Mater. Eng. Perform., 30(3), 1851 (2021).
18. M. Refai, Z. A. Hamid, R. M. El-kilani and G. E. M. Nasr, Chem.Pap., 75, 139 (2021).
19. N. F. El Boraei and M. A. M. Ibrahim, Mater. Chem. Phys., 285,126138 (2022).
20. C. M. P. Kumar, A. Lakshmikanthan, M. P. G. Chandrashekarappa,D. Y. Pimenov and K. Giasin, Coatings, 11, 712 (2021).
21. Z. A. Hamid, A. Y. El-Etre and M. Fareed, Anti-Corrosion Methods Mater., 64(3), 315 (2017).
22. Z. Abdel Hamid, H. B. Hassan and M. Sultan, Anti-Corrosion Methods Mater., 67(1), 38 (2020).
23. J. Kubisztal, A. Budniok and A. Lasia, Int. J. Hydrogen Energy, 32(9),1211 (2007).
24. W.-F. Chen, K. Sasaki, C. Ma, A. I. Frenkel, N. Marinkovic, J. T.Muckerman, Y. Zhu and R. R. Adzic, Angew. Chem. - Int. Ed.,51(25), 6131 (2012).
25. N. F. El Boraei and M. A. M. Ibrahim, Surf. Coat. Technol., 347, 113(2018).
26. J. H. Liu, J. X. Yan, Z. L. Pei, J. Gong and C. Sun, Surf. Coat. Technol., 404, 126476 (2020).
27. E. Beltowska-Lehman and P. Indyka, Thin Solid Films, 520(6), 2046(2012).
28. M. Donten, H. Cesiulis and Z. Stojek, Electrochim. Acta, 50(6), 1405(2005).
29. A. P. Grosvenor, M. C. Biesinger, R. S. C. Smart and N. S. McIntyre,Surf. Sci., 600(9), 1771 (2006).
30. M. A. M. Ibrahim, J. Appl. Electrochem., 36(3), 295 (2006).
31. N. F. El Boraei, M. A. M. Ibrahim and M. A. Naghmash, J. Phys.Chem. Solids, 167, 110714 (2022).
32. M. Schlesinger and M. Paunovic, Modern electroplating fifth edition, Fifth Edit. NY: Ajohn Wiley&sons, Inc., Publication (2011)