ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 2, 2022
Revised October 6, 2022
Accepted November 6, 2022
Acknowledgements
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effects of surface silylation on dye removal performance of mesoporous promoted titania-silica nanocomposite

1Catalysis and Nanomaterials Research Laboratory, School of Chemical, Petroleum, and Gas Engineering, Iran University of Science and Technology, P. O. Box 16765-163, Tehran, Iran 2Energy and Environment Research Center, Niroo Research Institute, P. O. Box 14665-517, Tehran, Iran 3Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19717 USA
abazyari@iust.ac.ir, ltt@udel.edu
Korean Journal of Chemical Engineering, May 2023, 40(5), 1197-1208(12), 10.1007/s11814-022-1338-2
downloadDownload PDF

Abstract

Surface modification of a mesoporous tungsten- and bismuth-promoted titania-silica nanocomposite was conducted by a silylation method using hexamethyldisilazane (HMDS) as the silylation reagent to overcome the low adsorption capacity of TiO2-based photocatalysts for organic dyes, which subsequently enhances photodegradation of the organic dyes under visible light irradiation. The performance of the nanocomposites was evaluated by photodegradation of Rhodamine B (RhB) dye under visible light irradiation in a triple-walled immersion well reactor. The synthesized nanocomposites were characterized by N2 adsorption-desorption, FE-SEM, XRD, SAED pattern, HR-TEM, EDX, FTIR, UV-Vis DRS, PL spectroscopy, TGA, and water contact angle measurement to determine the bulk structure and surface properties before and after surface silylation. The results revealed that surface hydroxyl groups were successfully replaced by the silyl groups via the silylation process, without significant alterations in the structure and textural properties of the nanocomposite. In addition, silylation of the nanocomposite surface significantly enhanced the adsorption capacity of RhB molecules due to increased surface hydrophobicity, which accelerated the photocatalytic degradation of RhB in water. The results of the photocatalytic degradation experiments demonstrated that although all the synthesized nanocomposites were able to remove all RhB molecules from water after 240 minutes of the reaction, the optimized silylated sample with 0.15 g of HMDS (TSWBi-Sil3) was able to remove 92% of the RhB after only 90 minutes, while it was only 79% for the unmodified nanocomposite.

References

1. H. Zangeneh, A. A. L. Zinatizadeh, M. Habibi, M. Akia and M. H.Isa, J. Ind. Eng. Chem., 26, 1 (2015).
2. P. A. K. Reddy, P. V. L. Reddy, E. Kwon, K.-H. Kim, T. Akter and S.Kalagara, Environ. Int., 91, 94 (2016).
3. J. Shi, W. Huang, H. Zhu, J. Xiong, H. Bei, X. Wei and S. Wang,Mater. Lett., 279, 128472 (2020).
4. A. Salama, A. Mohamed, N. M. Aboamera, T. A. Osman and A.Khattab, Appl. Nanosci., 8, 155 (2018).
5. S. Feizpoor, A. Habibi-Yangjeh, K. Yubuta and S. Vadivel, Mater.Chem. Phys., 224, 10 (2019).
6. H. Anwer, A. Mahmood, J. Lee, K.-H. Kim, J.-W. Park and A. C.K. Yip, Nano Res., 12, 955 (2019).
7. Y.-H. Chiu, T.-F. M. Chang, C.-Y. Chen, M. Sone and Y.-J. Hsu,Catalysts, 9, 430 (2019).
8. Y. Yu, M. Zhu, W. Liang, S. Rhodes and J. Fang, RSC Adv., 5, 72437(2015).
9. M. A. Rauf and S. S. Ashraf, Chem. Eng. J., 151, 10 (2009).
10. X. Sun, L. Yan, R. Xu, M. Xu and Y. Zhu, Colloids Surf. A Physicochem. Eng. Asp., 570, 199 (2019).
11. L. A. Calzada, R. Castellanos, L. A. García and T. E. Klimova, Micropor. Mesopor. Mater., 285, 247 (2019).
12. M.-C. Roşu, C. Socaci, V. Floare-Avram, G. Borodi, F. Pogăcean,M. Coroş, L. Măgeruşan and S. Pruneanu, Mater. Chem. Phys., 179,232 (2016).
13. M. Al Ruqaishy, F. Al Marzouqi, K. Qi, S. Liu, S. Karthikeyan, Y.Kim, S. M. Z. Al-Kindy, A. T. Kuvarega and R. Selvaraj, Korean J.Chem. Eng., 35, 2283 (2018).
14. D. Kwon and J. Kim, Korean J. Chem. Eng., 37, 1226 (2020).
15. R. Ameta, S. Benjamin, A. Ameta and S. C. Ameta, Mater. Sci.Forum, 734, 247 (2012).
16. S. M. Patil, S. P. Deshmukh, K. V More, V. B. Shevale, S. B. Mullani,A. G. Dhodamani and S. D. Delekar, Mater. Chem. Phys., 225, 247(2019).
17. R. Dewil, D. Mantzavinos, I. Poulios and M. A. Rodrigo, J. Environ. Manage., 195, 93 (2017).
18. M. R. D. Khaki, M. S. Shafeeyan, A. A. A. Raman and W. M. A. W.Daud, J. Environ. Manage., 198, 78 (2017).
19. M. Scarisoreanu, A. G. Ilie, E. Goncearenco, A. M. Banici, I. P. Morjan, E. Dutu, E. Tanasa, I. Fort, M. Stan, C. N. Mihailescu and C.Fleaca, Appl. Surf. Sci., 509, 145217 (2020).
20. M. Mousavi, M. Soleimani, M. Hamzehloo, A. Badiei and J. B.Ghasemi, Mater. Chem. Phys., 258, 123912 (2021).
21. M. M. Mahlambi, C. J. Ngila and B. B. Mamba, J. Nanomater., 2015,1 (2015).
22. M. R. Al-Mamun, S. Kader, M. S. Islam and M. Z. H. Khan, J. Environ. Chem. Eng., 7, 103248 (2019).
23. H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He and Y. He,Water Res., 79, 128 (2015).
24. D. Chen, Y. Cheng, N. Zhou, P. Chen, Y. Wang, K. Li, S. Huo, P.Cheng, P. Peng, R. Zhang, L. Wang, H. Liu, Y. Liu and R. Ruan, J.Clean. Prod., 268, 121725 (2020).
25. G. Zhang, A. Song, Y. Duan and S. Zheng, Micropor. Mesopor.Mater., 255, 61 (2018).
26. M. Chang, H. Hu, Y. Zhang, D. Chen, L. Wu and X. Li, Nanomaterials, 7, 104 (2017).
27. J. Chen, S. Qin, Y. Liu, F. Xin and X. Yin, Res. Chem. Intermed., 40,637 (2014).
28. D. Xu, Y. Hai, X. Zhang, S. Zhang and R. He, Appl. Surf. Sci., 400,530 (2017).
29. M. Malligavathy, S. Iyyapushpam, S. T. Nishanthi and D. P. Padiyan, J. Mater. Sci. Mater. Electron., 28, 18307 (2017).
30. Q. Peng, G. Peng, L. Wu, X. Wang, X. Yang and X. Li, Res. Chem.Intermed., 44, 6753 (2018).
31. E. Mugunthan, M. B. Saidutta and P. E. Jagadeeshbabu, Environ.Nanotechnol., Monit. Manag., 10, 322 (2018).
32. M. B. Tahir, M. Sagir and K. Shahzad, J. Hazard. Mater., 363, 205(2019).
33. P. Haghighi, S. Alijani, A. Bazyari and L. T. Thompson, J. Photochem. Photobiol. A Chem., 426, 113790 (2022).
34. H. Liu, D. Yu, T. Sun, H. Du, W. Jiang, Y. Muhammad and L.Huang, Appl. Surf. Sci., 473, 855 (2019).
35. C. Gomez-Polo, S. Larumbe, A. Gil, D. Muñoz, L. R. Fernández,L. F. Barquín, A. García-Prieto, M. L. Fdez-Gubieda and A. Muela,Surf. Interfaces, 22, 100867 (2021).
36. M. Kassir, T. Roques-Carmes, T. Hamieh, J. Toufaily, M. Akil, O.Barres and F. Villiéras, Colloids Surf. A Physicochem. Eng. Asp., 485,73 (2015).
37. M. Yan, G. Zeng, X. Li, C. Zhao, G. Yang, J. Gong, G. Chen, L. Tang and D. Huang, New J. Chem., 41, 4377 (2017).
38. Y. Kuwahara, K. Maki, Y. Matsumura, T. Kamegawa, K. Mori and H. Yamashita, J. Phys. Chem. C, 113, 1552 (2009).
39. Y. Kuwahara, T. Kamegawa, K. Mori, Y. Matsumura and H.Yamashita, Top. Catal., 52, 643 (2009).
40. K. Guesh, Á. Mayoral, C. Marquez-Alvarez, Y. Chebude and I.Diaz, Micropor. Mesopor. Mater., 225, 88 (2016).
41. N. N. Bahrudin and M. A. Nawi, Korean J. Chem. Eng., 36, 478(2019).
42. M. Baruah, S. L. Ezung, A. Supong, P. C. Bhomick, S. Kumar and D. Sinha, Korean J. Chem. Eng., 38, 1277 (2021).
43. Y. Kuwahara, T. Kamegawa, K. Mori and H. Yamashita, Chem.Commun., 39, 4783 (2008).
44. T. Ohno, T. Tsubota, K. Kakiuchi, S. Miyayama and K. Sayama, J.Mol. Catal. A Chem., 245, 47 (2006).
45. N. L. Reddy, S. Emin, M. Valant and M. V Shankar, Int. J. Hydrogen Energy, 42, 6627 (2017).
46. Y. Yamin, N. Keller and V. Keller, J. Photochem. Photobiol. A Chem.,245, 43 (2012).
47. A. R. Almeida, J. T. Carneiro, J. A. Moulijn and G. Mul, J. Catal., 273,116 (2010).
48. G. Zhang, J. Yi, J. Shim, J. Lee and W. Choi, Appl. Catal. B Environ.,102, 132 (2011).
49. L. Li, X. Wang, D. Zhang, R. Guo and X. Du, Appl. Surf. Sci., 328,26 (2015).
50. U. Mahanta, M. Khandelwal and A. S. Deshpande, Appl. Surf. Sci.,576, 151745 (2022).
51. Q. Jiang, J. Huang, B. Ma, Z. Yang, T. Zhang and X. Wang, Colloids Surf. A Physicochem. Eng. Asp., 602, 125112 (2020).
52. E. Pakdel, W. A. Daoud, S. Seyedin, J. Wang, J. M. Razal, L. Sun and X. Wang, Colloids Surf. A Physicochem. Eng. Asp., 552, 130 (2018).
53. D. R. Eddy, S. N. Ishmah, M. D. Permana and M. L. Firdaus, Cata-ysts, 10, 1248 (2020).
54. Q. Qin and Y. Xu, Micropor. Mesopor. Mater., 232, 143 (2016).
55. N. Lv, Y. Li, Z. Huang, T. Li, S. Ye, D. D. Dionysiou and X. Song,Appl. Catal. B Environ., 246, 303 (2019).
56. M. Xing, D. Qi, J. Zhang, F. Chen, B. Tian, S. Bagwas and M. Anpo,J. Catal., 294, 37 (2012).
57. H. Yamashita and H. Li, Nanostructured Photocatalysts, Springer(2016).
58. B. Shojaei, R. Miri, A. Bazyari and L. T. Thompson, Fuel, 321,124136 (2022).
59. K. Mirzaei, E. Jafarpour, A. Shojaei and H. Molavi, Ind. & Eng.Chem. Res., 61, 11735 (2022).
60. V. A. Tran, K. B. Vu, T.-T. T. Vo, H. H. Do, L. G. Bach and S.-W.Lee, Appl. Surf. Sci., 538, 148065 (2021).
61. D. Li, N. Ohashi, S. Hishita, T. Kolodiazhnyi and H. Haneda, J.Solid State Chem., 178, 3293 (2005).
62. J. Zhao, T. Wu, K. Wu, K. Oikawa, H. Hidaka and N. Serpone,Environ. Sci. Technol., 32, 2394 (1998)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로