Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 22, 2022
Revised September 6, 2022
Accepted September 8, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Ultrasound spray nozzle atomizer as a chemical reaction medium: Evaluation using Villermaux-Dushman test reaction
Abstract
The present work illustrates the po ssibility of atomizing the reactant mixture using a n ultrasound spray
nozzle atomizer to increase reactant contact surface area. The more surface area of the mist-like spray generated due to
the atomization provides a means for mixing of reactants, thereby enhancing the reaction rate. Therefore, this work
implements an ultrasound spray nozzle atomizer as a reactor. The micromixing efficiency of this novel reactor was evaluated using the Villermaux-Dushman test reaction protocol. An inlet micromixer was placed upstream of the ultrasonic
atomizer reactor to provide an early mixing of the reactants. Two simple Y-shaped micromixers with diameters of
0.8 mm and 1.5 mm were examined as the inlet micromixers. The effects of flow rate ratio, flow rate, reactant concentration and inlet micromixer diameter on micromixing efficiency were investigated. Furthermore, the micromixing time
was calculated based on the incorporation model through a detailed mathematical formulation. For the studied ranges of
operating conditions, the micromixing time was in the range of 0.1-1 s. The small value of estimated micromixing times
confirmed that the proposed technique is a valuable concept for intensifying micromixing in chemical reactors.
References
2. E. Tunestål, Investigations of micromixing-In Alfa Laval’s ART plate reactors, PhD Thesis, Chalmers University of Technology, Gothenburg, Sweden (2012).
3. L. Zhendong, L. Yangcheng, W. Jiawei and L. Guangsheng, Chem.Eng. J., 181, 597 (2012).
4. G. S. Jeong, S. Chung, C.-B. Kim and S.-H. Lee, Analyst, 135, 460(2010).
5. Y. Su, G. Chen and Q. Yuan, Chem. Eng. Sci., 66, 2912 (2011).
6. M. Rahimi, N. Azimi, M. A. Parsamogadam, A. Rahimi and M. M.Masahy, Microsyst. Technol., 23, 3117 (2017).
7. W. Jiao, Y. Liu and G. Qi, Chem. Eng. J., 157, 168 (2010).
8. G.-W. Chu, Y.-H. Song, H.-J. Yang, J.-M. Chen, H. Chen and J.-F.Chen, Chem. Eng. J., 128, 191 (2007).
9. Y. Wang, X. Tao, J. Li, S. Zhang, Y. Jin and M. Chen, Korean J.Chem. Eng., 38, 1727 (2021).
10. J. M. Reckamp, A. Bindels, S. Duffield, Y. C. Liu, E. Bradford, E.Ricci, F. Susanne and A. Rutter, Org. Process Res. Dev., 21, 816 (2017).
11. M.-C. Fournier, L. Falk and J. Villermaux, Chem. Eng. Sci., 51, 5053(1996).
12. J. Zhang, K. Wang, Y. Lu and G. Luo, Chem. Eng. Process.: Process Intensif., 49, 740 (2010).
13. K.-P. Cheng, B. Wu, R.-J. Gu and L.-X. Wen, Micromachines, 9, 549(2018).
14. O. S. Okwundu, M. Fuseini, A. H. El-Shazly and M. F. Elkady, J.Serbian Chem. Soc., 85, 381 (2020).
15. J.-M. Commenge and L. Falk, Chem. Eng. Process.: Process Intensif., 50, 979 (2011).
16. E. A. Mansur, Y. Mingxing, W. Yundong and D. Youyuan, Chin. J.Chem. Eng., 16, 503 (2008).
17. V. Hessel, H. Löwe and F. Schönfeld, Chem. Eng. Sci., 60, 2479(2005).
18. A. Kanaris and A. Mouza, Chem. Eng. Sci., 66, 5366 (2011).
19. J. Choe, Y. Kwon, Y. Kim, H.-S. Song and K. H. Song, Korean J.Chem. Eng., 20, 268 (2003).
20. R. Singh, H.-J. Lee, A. K. Singh and D.-P. Kim, Korean J. Chem.Eng., 33, 2253 (2016).
21. M. Rahimi, P. Valeh-e-Sheyda, M. A. Parsamoghadam, N. Azimi and H. Adibi, Chem. Eng. Process.: Process Intensif., 85, 178 (2014).
22. D. Y. Kim and J. M. Kim, Korean J. Chem. Eng., 36, 837 (2019).
23. S. Bose, S. S. Keller, T. S. Alstrøm, A. Boisen and K. Almdal, Langmuir, 29, 6911 (2013).
24. S. Nii, Ultrasonic Atomization, Handbook of ultrasonics and sonochemistry, Springer, Singapore (2016).
25. R. Rajan and A. B. Pandit, Ultrasonics, 39, 235 (2001).
26. M. Dobre and L. Bolle, Exp. Therm. Fluid Sci., 26, 205 (2002).
27. B. Avvaru, M. N. Patil, P. R. Gogate and A. B. Pandit, Ultrasonics,44, 146 (2006).
28. K. C. Pingali, D. A. Rockstraw and S. Deng, Aerosol Sci. Technol.,39, 1010 (2005).
29. M. Bastwros and G.-Y. Kim, Powder Technol., 288, 279 (2016).
30. J. P. Feng, S. I. Choi, H. S. Seo and Y. M. Jo, Korean J. Chem. Eng.,35, 2001 (2018).
31. P. Guichardon and L. Falk, Chem. Eng. Sci., 55, 4233 (2000).
32. M. Assirelli, W. Bujalski, A. Eaglesham and A. Nienow, Chem. Eng.Sci., 60, 2333 (2005).
33. A. Kölbl, M. Kraut and K. Schubert, AIChE J., 54, 639 (2008).
34. S. Panić, S. Loebbecke, T. Tuercke, J. Antes and D. Bošković, Chem.Eng. J., 101, 409 (2004).
35. F. Parvizian, M. Rahimi, N. Azimi and A. A. Alsairafi, Chem. Eng.Technol., 37, 113 (2014).
36. J. Pinot, J.-M. Commenge, J.-F. Portha and L. Falk, Chem. Eng. Sci.,118, 94 (2014).
37. N. Baccar, R. Kieffer and C. Charcosset, Chem. Eng. J., 148, 517(2009).
38. M. Faryadi, M. Rahimi, S. Safari and N. Moradi, Chem. Eng. Process.: Process Intensif., 77, 13 (2014).
39. C. Baqueiro, N. Ibaseta, P. Guichardon and L. Falk, Chem. Eng. Res.Des., 136, 25 (2018).
40. L. Falk and J.-M. Commenge, Chem. Eng. Sci., 65, 405 (2010).
41. J. Legrand, N. Benmalek, F. Imerzoukene, A.-R. Yeddou and F.Halet, Chem. Eng. J., 142, 78 (2008).
42. M. Kashid, A. Renken and L. Kiwi-Minsker, Chem. Eng. J., 167,436 (2011).
43. M.-C. Fournier, L. Falk and J. Villermaux, Chem. Eng. Sci., 51, 5187(1996).
44. A. Dalmoro, A. A. Barba, G. Lamberti and M. d’Amore, Eur. J.Pharm. Biopharm., 80, 471 (2012).
45. D. Sindayihebura, J. Cousin and C. Dumouchel, Part. Part. Syst.Charact., 14, 93 (1997).
46. T. J. Mason, Ultrason. Sonochem., 10, 175 (2003).
47. J. Stryckers, T. Swusten, W. Brullot, J. D'Haen, T. Verbiest and W.Deferme, Adv. Eng. Mater., 20, 1800681 (2018).
48. M. Lalo, Atomisation d'un film liquide mince par action combinée des instabilités de Kelvin-Helmholtz et de Faraday: application aux
injecteurs aérodynamiques des turbomachines aéoronautique, Doctoral Thesis, ENSAE-ONERA, Toulouse (2006).
49. Y. Kuang, C. Guangwen, S. Lei, Y. Xiang, L. Zhang and C. Jianfeng,Chin. J. Chem. Eng., 17, 546 (2009).
50. R. J. Lang, J. Acoust. Soc. Am., 34, 6 (1962).
51. H.-J. Yang, G.-W. Chu, J.-W. Zhang, Z.-G. Shen and J.-F. Chen,Ind. Eng. Chem. Res., 44, 7730 (2005).
52. X. Guo, Y. Fan and L. Luo, Chem. Eng. J., 227, 116 (2013).
53. F. Parvizian, M. Rahimi and N. Azimi, Chem. Eng. Process.: Process Intensif., 57, 8 (2012).
54. N. Aoki, T. Fukuda, N. Maeda and K. Mae, Chem. Eng. J., 227198 (2013).
55. L. Gaete-Garretón, D. Briceño-Gutiérrez, Y. Vargas-Hernández and C. Zanelli, J. Acoust. Soc. Am., 144, 222 (2018).
56. D.-Y. Kang and J.-H. Kim, Korean J. Chem. Eng., 38, 2286 (2021).
57. J. C. Simon, O. A. Sapozhnikov, V. A. Khokhlova, L. A. Crum and M. R. Bailey, J. Fluid Mech., 766, 129 (2015).
58. L. Zhang, C. Srinivasakannan, S. Li, Y. He, K. Chen and S. Yin,Microchem. J., 155, 104662 (2020).
59. S. Ferrouillat, P. Tochon and H. Peerhossaini, Chem. Eng. Process.:Process Intensif., 45, 633 (2006)