ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 23, 2022
Revised October 19, 2022
Accepted November 6, 2022
Acknowledgements
This work was supported by a research grant from Kongju National University in 2020.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Light-reflective properties of spherical TiO2 particles coated with (3-aminopropyl)trimethoxysilane, chitosan, SiO2, and SnO2

Department of Chemistry, Kongju National University, Gongjudaehak-ro 56, Gongju 32588, Korea
jisanrhee@kongju.ac.kr
Korean Journal of Chemical Engineering, May 2023, 40(5), 1228-1233(6), 10.1007/s11814-022-1336-4
downloadDownload PDF

Abstract

We synthesized TiO2-based composite pigment materials and investigated their light reflection properties. Micrometer-sized spherical TiO2 particles were synthesized by the sol-gel method using hydrolysis and condensation reactions of the precursors, and the rutile phase was prepared by calcining at 800 o C. TiO2-based composite materials were synthesized by coating the surface of the calcined TiO2 with (3-aminopropyl)trimethoxysilane (APTMS), chitosan, SiO2, and SnO2. The morphologies of the composite materials were characterized by field emission scanning electron microscopy (FE-SEM), and the structural properties of the composite materials were identified using powder X-ray diffraction (PXRD) analysis. Finally, the light reflection properties were investigated by measuring the percent reflectance in the wavelength range 300-2,500 nm of the composite materials by diffuse-reflectance UV-Vis-NIR spectroscopic analysis. In the wavelength range 300-2,500 nm, the composite materials showed solar reflectance of 86-93%. The composite materials synthesized in this study have potential for use as heat reflective pigment materials

References

1. M. Landmann, E. Rauls and W. G. Schmidt, J. Phys.: Condens.Matter., 24, 195503 (2012).
2. Y. Kumari, L. K. Jangir, A. Kumar, M. Kumar and K. Awasthi, Solid State Commun., 263, 1 (2017).
3. P. Jeevanandam, R. S. Mulukutla, M. Phillips, S. Chaudhuri, L. E.Erickson and K. Klabunde, J. Phys. Chem. C, 111, 1912 (2007).
4. H. Lu, M. Huang, K.-S. Shen, J. Zhang, S.-Q. Xia, C. Dong, Z.-G.Xiong, T. Zhu, D.-P. Wu, B. Zhang and X.-Z. Zhang, Nanoscale Res. Lett., 13, 328 (2018).
5. J. Panpranot, K. Kontapakdee and P. Praserthdam, J. Phys. Chem.B, 110, 8019 (2006).
6. V. Gowthambabu, M. Deshpande, R. Govindaraj, V. K. N. Krishna,M. L. Charumathi, J. M. Kumar, M. S. D. Vignesh, R. I. Daniel and P. Ramasamy, J. Mater. Sci.: Mater. Electron., 32, 26306 (2021).
7. S. H. Pak, J. H. Park and C. G. Park, Korean J. Chem. Eng., 39, 1863 (2022).
8. Y. Zhang, W. Jiang, Y. Ren, B. Wang, Y. Liu, Q. Hua and J. Tang,Korean J. Chem. Eng., 37, 536 (2020).
9. L. Sang, Y. Zhao and C. Burda, Chem. Rev., 114, 9283 (2014).
10. Y. Matsuo, New developments of high-reflective materials, pp. 3-12,CMC, Tokyo, Japan (2010).
11. V. A. Vlasov, A. L. Astafyev and A. N. Zarubin, IOP Conf. Ser.: Mater.Sci. Eng., 81, 012087 (2015).
12. W. E. Vargas, J. Appl. Phys., 88, 4079 (2000).
13. R. Ragheb and U. Nobbmann, Sci. Rep., 10, 21768 (2020).
14. H. Zhou, S. Sun and H. Ding, Adv. Mater. Sci. Eng., 2017, 9562612(2017).
15. B.-X. Wei, L. Zhao, T.-J. Wang, H. Gao, H.-X. Wu and Y. Jin, Adv.Powder Technol., 24, 708 (2013).
16. O. K. Park and Y. S. Kang, Colloids Surf. A: Physicochem. Eng.Aspects, 257-258, 261 (2005).
17. Y. S. Zhang, Y. M. Liu, C. Ge, H. B. Yin, M. Ren, A. L. Wang, H.Feng, J. Chen, T. S. Jiang and L. B. Yu, Powder Technol., 192, 171 (2009).
18. H.-X. Wu, T.-J. Wang and Y. Jin, Ind. Eng. Chem. Res., 45, 5274(2006).
19. Q. Gao, X. Wu and Y. Fan, Dyes Pigm., 109, 90 (2014).
20. H. Liu, X. Dong, X. Wang, C. Sun, J. Li and Z. Zhu, Chem. Eng. J.,230, 279 (2013).
21. T. He, X. Guo, K. Zhang, Y. Feng and X. Wang, RSC Adv., 4, 5880(2014).
22. E. Finocchio, I. Baccini, C. Cristiani, G. Dotelli, P. G. Stampino and L. Zampori, J. Phys. Chem. A, 115, 7484 (2011).
23. T. Thongkanluang, N. Chirakanphaisarn and P. Limsuwan, Procedia Eng., 32, 895 (2012).
24. H. Bendjedidi, A. Attaf, H. Saidi, M.S. Aida, S. Semmari, A. Bouhdjar and Y. Benkhetta, J. Semicond., 36 123002 (2015)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로