Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 11, 2022
Revised November 17, 2022
Accepted November 28, 2022
- Acknowledgements
- This work was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (2019R1 I1A3A01040476, 2022R1F1A1063615). This work was also supported by the Hankuk University of Foreign Studies Research Fund of 2022 and the BB21plus funded by Busan Metropolitan City and Busan Institute for Talent & Lifelong Education (BIT).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
The electrochemical performance of lotus-root shaped meso-/macroporous TiO2 anode for lithium-ion battery
Abstract
As an alternative to the graphite-based anode in lithium-ion battery (LIBs), the TiO2-based anode has continuously drawn attention due to its high stability and long operating life, especially in the field of electric vehicles
(EVs). Although a spinel structure lithium titanate (LTO, Li4Ti5O12) anode is commercially available, there has been a
constant need to improve the anode capacity with TiO2-based materials because they have much higher theoretical
capacity compared to LTO. In this regard, nanostructured TiO2-based materials with high surface area are thought to
be ideal for LIB anode application. In this study, a lotus-root shaped meso-/macroporous TiO2 (LR-700) material was
prepared and employed as an anode material for LIB with expectancy to have large channels for easy Li+
insertion and
thus show better electrical property. Coin cell tests were carried out with the anodes prepared from LR-700, LTO, and
nano-sized TiO2 powder (known as P25) for comparison by charging and discharging at 0.5 C. Despite the presence of
large macroporous channels and mesopores in the walls for LR-700, the capacity of 158 mAh/g for LR-700 anode was
found to be slightly lower than the LTO’s theoretical discharge capacity of 175 mAh/g. We envision that less thicker
walls would enhance the performance through effective ion diffusion and electronic conduction.
References
2. C. Zhu, R. E. Usiskin, Y. Yu and J. Maier, Science, 358, eaao2808 (2017).
3. Y. Tang, Y. Zhang, W. Li, B. Ma and X. Chen, Chem. Soc. Rev., 44,5926 (2015).
4. H. Kim, B. Han, J. Choo and J. Cho, Angew. Chem. Int. Ed., 47,10151 (2008).
5. H. Kim, M. Seo, M.-H. Park and J. Cho, Angew. Chem. Int. Ed., 49,2146 (2010).
6. W.-J. Zhang, J. Power Sources, 196, 13 (2011).
7. J. R. Szczech and S. Jin, Energy Environ. Sci., 4, 56 (2011).
8. H. Lee, S. Choi, S. Choi, H.-J. Kim, Y. Choi, S. Yoon and J.-J. Cho,Electrochem. Commun., 9, 801 (2007).
9. C. Natarajan, K. Setoguchi and G. Nogami, Electrochim. Acta, 43,3371 (1998).
10. S. Y. Huang, L. Kavan, I. Exnar and M. Grätzel, J. Electrochem. Soc.,142, L142 (1995).
11. G.-N. Zhu, Y.-G. Wang and Y.-Y. Xia, Energy Environ. Sci., 5, 6652(2012).
12. S. Scharner, W. Weppner and P. Schmid-Beurmann, J. Electrochem.Soc., 146, 857 (1999).
13. R. Fu, X. Zhou, H. Fan, D. Blaisdell, A. Jagadale, X. Zhang and R.Xiong, Energies, 10, 2174 (2017).
14. J.-Y. Shin, D. Samuelis and J. Maier, Adv. Funct. Mater., 21, 3464(2011).
15. F. Di Lupo, A. Tuel, V. Mendez, C. Francia, G. Meligrana, S. Bodoardo and C. Gerbaldi, Acta Mater., 69, 60 (2014).
16. T. Fröschl, U. Hörmann, P. Kubiak, G. Kučerová, M. Pfanzelt, C.K. Weiss, R. J. Behm, N. Hüsing, U. Kaiser, K. Landfesterd and M.Wohlfahrt-Mehrens, Chem. Soc. Rev., 41, 5313 (2012).
17. M. E. Davis, Nature, 417, 813 (2002).
18. T. Ding, J. Wu, Z. Chen, T. Lan and M. Wei, J. Electroanal. Chem.,818, 1 (2018).
19. J. Li, J. Guo, J. Deng and Y. Huang, Mater. Lett., 189, 188 (2017).
20. Y. Li, X. Yan, W. Yan, X. Lai, N. Li, Y. Chi, Y. Wei and X. Li, Chem.Eng. J., 232, 356 (2013).
21. M. Zhen, X. Zhen and L. Liu, Mater. Lett., 193, 150 (2017).
22. Y.-G. Guo, Y.-S. Hu and J. Maier, Chem. Commun., 26, 2783 (2006).
23. S. Nagpure, Q. Zhang, M. A. Khan, S. Z. Islam, J. Xu, J. Strzalka, Y.-T.Cheng, B. L. Knutson and S. E. Rankin, Adv. Funct. Mater., 28,1801849 (2018).
24. J. S. Chen and X. W. Lou, Electrochem. Commun., 11, 2332 (2009).
25. S. Ding, J. S. Chen, Z. Wang, Y. L. Cheah, S. Madhavi, X. Hu and X. W. Lou, J. Mater. Chem., 21, 1677 (2011).
26. F. Wu, Z. Wang, X. Li and H. Guo, Ceram. Int., 40, 16805 (2014).
27. K. Zhu, X. Liu, J. Du, J. Tian, Y. Wang, S. Liu and Z. Shan, J. Mater.Chem. A, 3, 6455 (2015).
28. J.-Y. Hong, S.-E. Bae, Y. S. Won and S. Huh, J. Colloid Interface Sci.,448, 467 (2015).
29. J. Li, T. Zhang, C. Han, H. Li, R. Shi, J. Tong and B. Li, J. Mater.Chem. A, 7, 455 (2019).
30. T. Ohzuku, A. Ueda and N. Yamamoto, J. Electrochem. Soc., 142,1431 (1995).
31. D. Deng, M. G. Kim, J. Y. Lee and J. Cho, Energy Environ. Sci., 2,818 (2009).
32. C. Han, Y.-B. He, S. Wang, C. Wang, H. Du, X. Qin, Z. Lin, B. Li and F. Kang, ACS Appl. Mater. Interfaces, 8, 18788 (2016).
33. D. Aurbach, J. Power Sources, 89, 206 (2000).
34. A. R. C. Bredar, A. L. Chown, A. R. Burton and B. H. Farnum, ACS Appl. Energy Mater., 3, 66 (2020).
35. J. Sastre, X. Chen, A. Aribia, A. N. Tiwari and Y. E. Romanyuk, ACS Appl. Mater. Interfaces, 12, 36196 (2020).
36. L. Tang, Y.-B. He, C. Wang, S. Wang, M. Wagemaker, B. Li, Q.-H.Yang and F. Kang, Adv. Sci., 4, 1600311 (2017).
37. N. Sharma, J. Plévert, G. V. Subba Rao, B. V. R. Chowdari and T. J.White, Chem. Mater. 17, 4700 (2005)