ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 13, 2022
Revised December 24, 2022
Accepted December 31, 2022
Acknowledgements
This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2018R1A5A1024127). This work was also supported by Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0012770).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Enhancing the electrical conductivity of stretchable silicone composite textiles using ethanol solvent treatment

Department of Chemical Engineering, Soongsil University, Seoul 06978, Korea
junhyuplee@ssu.ac.kr
Korean Journal of Chemical Engineering, May 2023, 40(5), 1240-1246(7), 10.1007/s11814-023-1394-2
downloadDownload PDF

Abstract

he electrical conductivity and mechanical properties of a stretchable conductive composite textile (CCT) were simply enhanced by solvent treatment with ethanol (EtOH). The proposed flexible conductive composites were prepared using a conductive silicone polymer and a stretchable fabric, wherein the EtOH solvent effectively eliminates the unreacted silicone components between the textile fibers to form a mechanically interlocking structure between silicone polymer and fabric. As a result, mechanical failure between the silicone matrix and the textile layer after repeated tensile testing was prevented to result in a high strain recovery rate of silicone-embedded CCT. After six cyclic strain recovery tests, the EtOH-treated CCT exhibited an excellent recovery rate of 79.3% and continued to maintain a high recovery rate of 70.4% even after ten cycles. Notably, even after continuous tensile loading, an extremely low electrical resistance of 3.1  was also retained.

References

1. J. An, S. Kim, J.-W. Choi, J. Park, S.-R. Son, C. B. Park and J. H.Lee, J. Ind. Eng. Chem., 108, 139 (2022).
2. M. Krifa, Textiles, 1, 239 (2021).
3. G. B. Tseghai, B. Malengier, K. A. Fante, A. B. Nigusse and L. Van Langenhove, Sensors, 20, 1 (2020).
4. C. Wang, M. Zhang, K. Xia, X. Gong, H. Wang, Z. Yin, B. Guan and Y. Zhang, ACS Appl. Mater. Interfaces, 9, 13331 (2017).
5. V. Marozas, A. Petrenas, S. Daukantas and A. Lukosevicius, J. Electrocardiol., 44, 189 (2011).
6. T. Bashir, M. Skrifvars and N. K. Persson, Polym. Adv. Technol., 22,2214 (2011).
7. A. Carnevale, C. Massaroni, D. Lo Presti, J. Di Tocco, M. Zaltieri,D. Formica, U. Giuseppe Longo, E. Schena and V. Denaro, IEEE Med. Meas. Appl. MeMeA 2020 - Conf. Proc., 1 (2020).
8. P. Schäl, I. Juhász Junger, N. Grimmelsmann and A. Ehrmann, J.Coatings Technol. Res., 15, 875 (2018).
9. D. Kowalczyk, S. Brzezinski, I. Kaminska, S. Wrobel, U. Mizerska,W. Fortuniak, E. Piorkowska, M. Svyntkivska and T. Makowski, J.Alloys Compd., 784, 22 (2019).
10. J. Bae, Y. Hwang, S. J. Park, J.-H. Ha, H. J. Kim, A. Jang, J. An, C.-S.Lee and S.-H. Park, Polymers, 10, 951 (2018).
11. L. Li, T. Fan, R. Hu, Y. Liu and M. Lu, Cellulose, 24, 1121 (2017).
12. A. M. Grancarić, I. Jerković, V. Koncar, C. Cochrane, F. M. Kelly,D. Soulat and X. Legrand, J. Ind. Text., 48, 612 (2018).
13. A. Mata, A. J. Fleischman and S. Roy, Biomed. Microdevices, 7, 281(2005).
14. M. W. Toepke and D. J. Beebe, Lab Chip, 6, 1484 (2006).
15. B. Jo, L. M. Van Lerberghe, K. M. Motsegood and D. J. Beebe, J.Microelectromech. Syst., 9, 76 (2000).
16. G. W. Huang, H. M. Xiao and S. Y. Fu, Sci. Rep., 5, 1 (2015).
17. S. Cha, I. Kim, E. Lee, E. Jang and G. Cho, Fibers Polym., 21, 2479(2020).
18. G. B. Tseghai, B. Malengier, K. A. Fante and L. Van Langenhove,FLEPS 2021 - IEEE Int. Conf. Flex. Printable Sensors Syst., 1, 2 (2021).
19. J. Barnes, M. Dreher, K. Plett, R. S. Brown, C. M. Crudden and H. P. Loock, Analyst, 133, 1541 (2008).
20. J. Figueira, J. Loureiro, E. Vieira, E. Fortunato, R. Martins and L.Pereira, Flex. Print. Electron., 6, 045018 (2021).
21. G. B. Tseghai, B. Malengier, K. A. Fante, A. B. Nigusse and L. Van Langenhove, Sensors, 20, 1742 (2020).
22. E. P. T. De Givenchy, S. Amigoni, C. Martin, G. Andrada, L. Caillier,S. Géribaldi and F. Guittard, Langmuir, 25, 6448 (2009).
23. K. L. Lai, I. C. Leu and M. H. Hon, J. Micromech. Microeng., 19,037001 (2009).
24. C. Gleissner, C. Biermaier, T. Bechtold and T. Pham, Mater. Chem.Phys., 288, 126383 (2022).
25. Z. Yang, H. Peng, W. Wang and T. Liu, J. Appl. Polym. Sci., 116,2658 (2010).
26. Y. C. Xu, Z. X. Wang, X. Q. Cheng, Y. C. Xiao and L. Shao, Chem.Eng. J., 303, 555 (2016).
27. J. Wang, W. Wang, C. Zhang and W. Yu, Compos. B. Eng., 133, 185(2018)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로