Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 15, 2022
Revised January 29, 2023
Accepted February 5, 2023
- Acknowledgements
- This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea Government Ministry of Trade, Industry, and Energy (No. 20172010104830), by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2018 R1A2A3074950), and by the Korea Institute for Advancement of Technology (KIAT) and the Ministry of Trade, Industry, & Energy (MOTIE) of the Republic of Korea (No. P0017363).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Hydrogenated amorphous carbon films deposited using plasma enhanced chemical vapor deposition processes
Abstract
Hydrogenated amorphous carbon (a-C:H) is a class of amorphous carbon with more than 30% hydrogen
content and containing sp2
as well as sp3
carbon atoms. It is widely used as a hard mask in semiconductor device fabrication, protective coatings, lubricants, and biomedical applications. The properties of a-C:H films are known to be
strongly dependent on the carbon bonding structure and are characterized using the sp2
/sp3
carbon hybridization ratio.
The a-C:H films are typically deposited by plasma-enhanced chemical vapor deposition (PECVD) processes, and this
review summarizes and discusses the relationship between the sp2
/sp3
ratio of a-C:H and plasma characteristics. The
effects of temperature, radical density, ion density, and ion energy on the sp2
/sp3
ratio of a-C:H are investigated and
summarized.
References
2. H. T. T. Vu, V. L. N. Vo and Y. Chung, Korean J. Chem. Eng., 38,1139 (2021).
3. G. M. Pharr, D. L. Callahan, S. D. McAdams, T. Y. Tsui, S. Anders,A. Anders, J. W. Ager III, I. G. Brown, C. S. Bhatia, S. R. P. Silva and J. Robertson, Appl. Phys. Lett., 68, 779 (1996).
4. D. R. McKenzie, Rep. Prog. Phys., 59, 1611 (1996).
5. N. Ohtake, M. Hiratsuka, K. Kanda, H. Akasaka, M. Tsujioka, K.Hirakuri, A. Hirata, T. Ohana, H. Inaba, M. Kano and H. Saitoh,Materials, 14, 315 (2021).
6. J. Robertson, Adv. Phys., 35, 317 (1986).
7. M. Weiler, S. Sattel, K. Jung, H. Ehrhardt, V. S. Veerasamy and J.Robertson, Appl. Phys. Lett., 64, 2797 (1994).
8. J. Schwan, S. Ulrich, K. Jung, H. Ehrhardt, R. Samlenski and R.Brenn, Diam. Relat. Mater., 4, 304 (1995).
9. N. A. Morrison, S. E. Rodil, A. C. Ferrari, J. Robertson and W. I.Milne, Thin Solid Films, 337, 71 (1999).
10. C. Baron, S. Ghodbane, A. Deneuville, T. E. Bustarret, L. Ortega and F. Jomard, Diam. Relat. Mater., 14, 949 (2005).
11. F. Piazza, O. Resto and G. Morell, J. Appl. Phys., 102, 013301 (2007).
12. S. Pisana, C. Casiraghi, A. C. Ferrari and J. Robertson, Diam. Relat.Mater., 15, 898 (2006).
13. P. Kiodl, C. Wild, B. Dischler, J. Wagner and M. Ramsteiner, Mater.Sci. Forum, 52, 41 (1990).
14. J. W. Zou, K. Reichelt, K. Schmidt and B. Dischler, J. Appl. Phys.,65, 3914 (1989).
15. M. A. Tamor, W. C. Vassell and K. R. Carduner, Appl. Phys. Lett.,58, 592 (1991).
16. M. A. Tamor and W. C. Vassell, J. Appl. Phys., 76, 3823 (1994).
17. S.-C. Lee, F.-C. Tai and C.-H. Wei, Mater. Trans., 48, 2534 (2007).
18. K. P. Kim, W. S. Song, M. K. Park and S. J. Hong, J. Nanosci. Nanotechnol., 21, 2032 (2021).
19. J. Li, S. J. Kim, S. Han and H. Chae, Surf. Coat. Technol., 422, 127514(2021).
20. J. Li, S. J. Kim, S. Han, Y. Kim and H. Chae, Plasma Processes Polym.,18, e2100075 (2021).
21. J. H. Kwon, S. Y. L. Park, K. C. Seo, W. J. Ban, G. O. Park and D. D.Lee, Thin Solid Films, 531, 328 (2013).
22. S. Lee, J. Won, J. Choi, J. Park, Y. Jee, H. Lee and D. Byun, Thin Solid Films, 519, 6683 (2011).
23. J. Li, Y. Kim, S. Han and H. Chae, Materials, 14, 2941 (2021).
24. Z. Jiang, H. Zhu and Q. Sun, Electronics, 10, 1374 (2021).
25. M. H. Jeon, J. W. Park, D. H. Yun, K. N. Kim and G. Y. Yeom, J.Nanosci. Nanotechnol., 15, 8577 (2015).
26. B. S. Kwon, J. S. Kim, N.-E. Lee and J. W. Shon, J. Electrochem. Soc.,157, D135 (2010).
27. S. Kim, G. Choi, H. Chae and N. E. Lee, J. Nanosci. Nanotechnol.,16, 5143 (2016).
28. B. Kwon, H. Lee, N. Lee, C. Kim and C. K. Choi, J. Korean Phys.Soc., 62, 67 (2013).
29. J. H. Lee, B. S. Kwon and N. E. Lee, Thin Solid Films, 521, 83 (2012).
30. G. Choi, S. Kim, H. Jang, H. Chae and N. E. Lee, J. Nanosci. Nanotechnol., 16, 11817 (2016).
31. P. Makula, M. Pacia and W. Macyk, J. Phys. Chem. Lett., 9, 6814(2018).
32. W. Dworschak, R. Kleber, A. Fuchs, B. Scheppat, G. Keller, K. Jung and H. Ehrhardt, Thin Solid Films, 189, 257 (1990).
33. B. K. Kim and T. A. Grotjohn, Diam. Relat. Mater., 9, 37 (2000).
34. S. Peter, K. Graupner, D. Grambole and F. Richter, J. Appl. Phys.,102, 053304 (2007).
35. D. Franta, V. Bursikova, I. Ohlidal, L. Zajickova and P. Stahel, Diam.Relat. Mater., 14, 1795 (2005).
36. L. Jiang, T. Wang, Y. Peng, H. Tian, M. Li, T. Xiao, P. Xiang, Y. Sun and X. Tan, J. Non-Cryst. Solids, 514, 60 (2019).
37. A. Fuchs, J. Scherer, K. Jung and H. Ehrhardt, Thin Solid Films,232, 51 (1993).
38. N. Fourches and G. Turban, Thin Solid Films, 240, 28 (1994).
39. G. Capote, R. Prioli, P. M. Jardim, A. R. Zanatta, L. G. Jacobsohn and F. L. Freire Jr., J. Non-Cryst. Solids, 338, 503 (2004).
40. S. F. Yoon, H. Yang, Rusli, J. Ahn, Q. Zhang and T. L. Poo, Diam.Relat. Mater., 6, 1683 (1997).
41. S. Lee, J. Won, J. Choi, S. Jang, Y. Jee, H. Lee and D. Byun, Thin Solid Films, 519, 6737 (2011).
42. A. von Keudell and W. Jacob, J. Appl. Phys., 81, 1531 (1997).
43. Z. Sun, S. Xu and K. N. Ostrikov, Diam. Relat. Mater., 11, 92 (2002).
44. S. J. Park, D. Kim, S. Lee, Y. Ha, M. Lim and K. Kim, Thin Solid Films, 663, 21 (2018)